
#9: Interaction & Events
SAMS SENIOR CS TRACK

Last Time
Used strings, lists, and objects to hold and modify data.

Understood the difference between mutable and immutable datatypes, and when aliasing
occurs.

Today's Learning Goals
Create interaction with the computer through use of input and output.

Use the Model-View-Controller framework to organize complex applications.

Capture events and use them to make interactive graphics.

Interaction

Input & Output
When we interact with a computer, we provide the computer with input, and it responds with
output.

This input-output cycle is at the center of all interactive applications. The application must be
able to process and respond to human input, just as human users must be able to understand
and respond to computer output.

Computer Output
We've already used one mode of computer output: we've had the computer print values to the
screen.

print() sends information to sys.stdout (system standard out). This shows up in the
interpreter in Pyzo.

Computer Input
So far, to provide input, we've directly typed values into the interpreter or into our files. But we
can ask for input during programs as well!

result = input(message) displays the given message, then waits for the user to type a
response. When the user presses Enter, the typed message is stored as a string in result.

name = input("Who are you?")

print("Hello " + name + "!")

Managing errors
When we start allowing users to input values, we can get errors that are the user's fault, not
ours. To handle possible user error, we use error-catching with try and except.

try:

<possibly-breaking code>

except:

<what to do if the code breaks>

Error Catching Example
Say we want to write a program that multiplies the inputted number by 2. We need to make
sure to handle the case where the user gives us a non-number!

try:

result = int(input("Enter a number: "))

print("Answer: ", result * 2)

except:

print("You have to enter a number!")

Adding some randomness...
Finally, it can be helpful to allow for some random behavior when making applications
interactive. We can approximate randomness using the random library. (We'll talk about this in
more depth next week).

https://docs.python.org/3.6/library/random.html

To choose a random number in the range [x, y]:

num = random.randint(x, y)

To select a random element from a list lst:

item = random.choice(lst)

https://docs.python.org/3.6/library/random.html

Example
Let's program an interactive number guessing game!

I'm thinking of a number between 1 and 10. Or rather, the computer is...

Events

Interaction in Graphics
Just as we can make interactive text applications, we can also make interactive graphic
applications!

We primarily interact with graphical applications using the mouse/trackpad and the keyboard.

Organizing an Application
As we start to build more complex programs, we'll need to decide how to organize the programs
in advance. It's too hard to approach coding something as complex as Tetris or Mario otherwise.

In interactive graphics, we do this using a framework called MVC: Model-View-Controller

Model-View-Controller
When you decide to code a complex application, think about how it will change, then consider:

Model – what parts of the application change over time? We'll need to store this data so that we
can update it whenever we need to.

View – what parts of the application need to be drawn on the screen? We'll need to refresh the
graphics every time the model changes.

Controller – what causes the model to change? And how does it change as a result? We'll need
to capture these events and change the model appropriately.

MVC Example
How would we break the game Sudoku down according to the MVC structure?

Game: http://www.logicgamesonline.com/sudoku/

Model:

View:

Controller:

http://www.logicgamesonline.com/sudoku/

New Graphics Starter Code
See http://krivers.net/15112-s19/notes/notes-animations-part1.html#starter-code

Note: you won't be responsible for the run() function. That's just setting everything up for you.

http://krivers.net/15112-s19/notes/notes-animations-part1.html#starter-code

Model
We need to access the model in both the view and the controllers. Therefore, we'll create a
simple object that can be provided to all functions. This object, called data, will alias across
functions. When we update it in the controller, it will also update in the view!

We need to put all the necessary information in data at the start of the program. To do this, we
write a function init(data) which is only called once, at the very beginning. In init, we can
add new model variables with:

data.varName = value

Note that data starts with the width and height already stored in it.

View
We'll update the view in the function redrawAll(canvas, data). This is just like the draw()
functions we've already written, except that it will be called over and over again, every time the
controllers change a value in data.

By calling redrawAll multiple times and changing the values in data, we can make the graphics
appear to change, or move, based on our interaction!

Event Loop
Your computer is always waiting to capture a variety of events that can happen from different
input sources. (Pressing a key, moving the trackpad, clicking the mouse, plugging in the power...)

The computer can then forward some of those events to our program, so we can interpret them.
In interactive graphics, we'll ask the computer to forward mouse click events and keyboard
press events.

Our program will listen for those forwarded events and will call special controller functions
when it receives them. It will also update the view every time a change occurs.

Handling Mouse events
A mouse event involves two pieces of information: the x and y coordinates where the
mouse/trackpad was clicked on the canvas.

That information is passed along in the event parameter, as event.x and event.y.

def mousePressed(event, data):

print(event.x, event.y)

We can store that information in data to modify things in redrawAll!

Example: moving a circle
def init(data):

data.currentX = data.width/2

data.currentY = data.height/2

def mousePressed(event, data):

data.currentX = event.x

data.currentY = event.y

def redrawAll(canvas, data):

canvas.create_oval(data.currentX - 50, data.currentY - 50,

data.currentX + 50, data.currentY + 50,

fill="lavender")

Example: clicking a button
def init(data):

data.buttonX, data.buttonY = data.width/2, data.height/2

data.buttonSize = 50

data.buttonClicked = False

def mousePressed(event, data):

if (data.buttonX - data.buttonSize <= event.x <= data.buttonX + data.buttonSize) and \

(data.buttonY - data.buttonSize <= event.y <= data.buttonY + data.buttonSize):

data.buttonClicked = not data.buttonClicked

def redrawAll(canvas, data):

color = "purple" if data.buttonClicked else "gray"

canvas.create_rectangle(data.buttonX - data.buttonSize, data.buttonY - data.buttonSize,

data.buttonX + data.buttonSize, data.buttonY + data.buttonSize,

fill=color)

Handling Keyboard events
A keyboard event involves one piece of information: which key is typed.

We can get that key as a single character with event.char. Some keys don't have single-character
representations, though; for those, we can find special representations in event.keysym.

def keyPressed(event, data):

print(event.char, event.keysym)

Example: displaying typed characters
def init(data):

data.curChar = ""

data.curKeysym = ""

def keyPressed(event, data):

data.curChar = event.char

data.curKeysym = event.keysym

def redrawAll(canvas, data):

canvas.create_text(data.width/2, data.height/2, font="Arial 32 bold",

text=data.curChar + "\n" + data.curKeysym)

Example: moving with arrow keys
def init(data):

data.circleX = data.width/2

data.circleY = data.height/2

def keyPressed(event, data):

if event.keysym == "Up": data.circleY -= 20

elif event.keysym == "Down": data.circleY += 20

elif event.keysym == "Left": data.circleX -= 20

elif event.keysym == "Right": data.circleX += 20

def redrawAll(canvas, data):

canvas.create_oval(data.circleX - 50, data.circleY - 50,

data.circleX + 50, data.circleY + 50, fill="salmon")

Putting it all together
To make a full interactive application or game, we just need to combine all the necessary
functions and data!

In these applications and games, we'll often need to store game state in data. This will let us
keep track of what's currently going on behind the scenes.

Note: never modify the game state in redrawAll! This can lead to nasty, unexpected behaviors.
Only modify state in init and the controllers.

Today's Learning Goals
Create interaction with the computer through use of input and output.

Use the Model-View-Controller framework to organize complex applications.

Capture events and use them to make interactive graphics.

