
Advanced #4: User
Interfaces
SAMS SENIOR CS TRACK

Learning Goals
Use state machines to organize all the possible interactions with an application.

Use widgets to provide different kinds of inputs and outputs in applications.

User Interfaces are for Interaction
When we build an application (like an advanced game
or website), we often need to build a tool that can
interact with a person in multiple different ways.

Consider an application like an email client- the user
needs to be able to see all their active messages, but
also read an individual message, write a new message,
and archive a single message from the list.

One way to separate out all these interactions is to
design a user interface that lets the user focus on one
task at a time, while still being able to switch tasks at
need. Within a task, the interface will let the user take
actions and view the results, as an advanced
input/output loop.

input

output

State Machines

State Machines Organize Features
First, when designing a large or complex application, we need to break down the system into
individual parts, then decide how those parts will be organized into different screens. In most
cases, we won't be able to fit all tasks on one identical screen- we'll need to change the screen
based on the users' needs.

We can write out state machines to help decide how the application will be organized before we
start coding. This will help us determine how the code itself will be organized and connected.
Planning out a design before writing the code is essential when building something large!

States and Transitions
A state machine is composed of two parts: a
set of states (application screens where the
user might end up) and transitions that link
the states (actions that can happen which will
move the user from one state to another). In
other words, a state machine is just a graph!

In the email client we mentioned earlier, the
state machine might look something like the
graph on the right, where the rectangles are
states and the arrows are transitions. Note
that transitions are usually directional- you can
only move from state A to state B with a
certain action.

main email list

read email

write email

click rep
ly b

u
tto

n

type message

Programming State Machines
When we program a state machine, we'll represent
which state we're in as part of the model, while
transitions will all be decisions inside the
controllers.

In the email client example, we can add a variable
called state to our data model, then set it equal to a
string that maps to the current state. We can then
check that variable to see which state we're in.

Then, in mousePressed, we can check which state
we're in, then check where the user clicked, to
decide what to do next. This might look something
like the code to the right.

def init(data):

data.state = "main"

data.emailID = None

def mousePressed(event, data):

if data.state == "main":

if inArchiveButton(event.x, event.y):

doArchive(event, data)

elif inComposeButton(event.x, event.y):

data.state = "write"

elif inEmailBox(event.x, event.y):

data.state = "read"

data.emailID = getID(event, data)

elif data.state == "read":

...

State Machines and Abstraction
The example we've gone into here shows how a
state machine works at a high level of
abstraction. But we can make state machines for
low-level actions too, when needed.

Say you want to program a button that will look
different based on whether the user is hovering
over it with the mouse, and whether it has been
clicked. The state machine for this button's
appearance would look something like the
example on the right.

Of course, we usually don't need to program our
own button- it's provided for us!

Idle

Hover

Pressed

Widgets

Widgets Provide Standard Interactions
Most graphics/layout libraries provide implementations of standard widgets to facilitate user
interaction. A widget is a name for a component of an interface that you can find across multiple
applications.

You interact with standard widgets all the time! While reading these slides you're probably using
the scrollbar to navigate, and you might use the search text entry to find a specific piece of
information.

Standard Widgets
While there are hundreds of widgets that we can use in interfaces, there are a subset that are
used most commonly, which we'll show here.

◦ Window – the outer container for an application

◦ Frame – a box within the window that can hold and
organize other widgets

◦ Dialog box – a pop-up box that asks to user to
choose a button to click

◦ Menu – when hovered over, provides a list of
possible actions which may themselves be menus

◦ Scrollbar – a rectangle to the side of the screen that
lets the user move across a larger window

◦ Label – a box that holds pre-written text

◦ Icon – a box that holds an image

◦ Button – clicked with the mouse to start an action

◦ Checkbox – used with other checkboxes to make
the user choose one or more options

◦ Radio button – used with other radio buttons to
make the user choose a single option

◦ Drop-down List – when clicked, provides a box with
a list of items for the user to select

◦ Text box – a box that, when clicked in, lets the user
enter text with the keyboard

Widgets in Tkinter
Tkinter has most of these widgets already implemented for us to use! We can find a list of
widgets with more information here: https://effbot.org/tkinterbook/tkinter-classes.htm

However, to use these widgets in Tkinter, we'll need to change our animation framework slightly.
Instead of putting widgets on the canvas, we'll need to put them directly into the root window.

To do this, we'll need to understand our animation framework's run function...

https://effbot.org/tkinterbook/tkinter-classes.htm

Run – Adding Widgets
from tkinter import *

root = Tk()

canvas = Canvas(root, width=400, height=500)

canvas.pack()

canvas.create_rectangle(0, 0, 400, 500, fill="red")

button = Button(root, text="Click Me!")

button.pack()

root.mainloop()

The first thing we do in the run function is set root = Tk().
This creates the window we'll put our application in.

To put things in the window, we need to create the widget
(as we do with canvas). Note that the first argument to the
Canvas call is root- that tells Canvas that it belongs in the
root window.

Once we've finished setting up a widget, we call
widget.pack() to actually put the widget in its parent
window. The parent has a specified layout to arrange the
items inside of it; by default, this is vertically from top to
bottom. So when we add a Button, it will show up under
the canvas.

Finally, when we've finished setting up everything, we call
root.mainloop() to tell the window to stay open until we
close it.

Run - Event Handlers
def mousePressedWrapper(event, canvas, data):

mousePressed(event, data)

redrawAllWrapper(canvas, data)

def keyPressedWrapper(event, canvas, data):

keyPressed(event, data)

redrawAllWrapper(canvas, data)

root.bind("<Button-1>", lambda event:

mousePressedWrapper(event, canvas, data))

root.bind("<Key>", lambda event:

keyPressedWrapper(event, canvas, data))

In order to make the application interactive, we need
to set up event handlers that will capture input from
the user and redirect it to our own functions. The
computer is constantly monitoring input that the user
creates, and it can forward that input to active
applications.

In our default animation framework, we have two
event handlers- mousePressed and keyPressed. In
run(), we set these up by binding specific events that
happen within the root window to functions we define.
In this case, we're binding Button-1 (mouse click)
events and Key events.

Note that lambda event: ... just lets us take the
information associated with the event and send it to
our own function alongside the canvas and data.

Widget Examples
Once we can pack widgets into the root window and associate them with event commands, we
can start setting up real applications!

We'll go over three widget examples here: Button, Text Box, and Radio Button. We'll use each to
modify the color of the canvas.

Button Example
To make a button, we need to set up the text on the
button and the function that is called when we click the
button.

We'll make a button that changes the color of the canvas
every time we click it to a random color. We'll need to call
redrawAllWrapper() after the change to refresh the
canvas.

Note that buttonFun's lambda takes no arguments. That's
because clicking the button doesn't generate new data.
We still need to provide canvas and data so that
buttonWrapper has access to them.

More info here:
https://effbot.org/tkinterbook/button.htm

from tkinter import *
import random

class Struct(object): pass
data = Struct()
data.width = 400
data.height = 400
data.color = "red"
root = Tk()

def redrawAll(canvas, data):
canvas.create_rectangle(0, 0, data.width, data.height, fill=data.color)

def redrawAllWrapper(canvas, data):
canvas.delete(ALL)
redrawAll(canvas, data)
canvas.update()

canvas = Canvas(root, width=data.width, height=data.height)
canvas.configure(bd=0, highlightthickness=0)
canvas.pack()

def buttonWrapper(canvas, data):
data.color = random.choice(["red", "yellow", "green", "blue"])
redrawAllWrapper(canvas, data)

buttonFun = lambda : buttonWrapper(canvas, data)
button = Button(root, text="Change Color", command=buttonFun)
button.pack()

redrawAllWrapper(canvas, data)
root.mainloop()

https://effbot.org/tkinterbook/button.htm

Text Box Example
Next, let's make a text box that lets the user enter the name of
the color they want to set the canvas to.

A text box works differently from a button. We set it up as an
Entry() with just the parent window as an argument. And we
can't set up an event handler in the text box- we'll need to set
up a general handler in the root window instead.

Here, we'll listen for a Return event (when the enter key is
pressed), then get the text from the textbox with .get(). We'll
need to store the textbox in data for this to work. We can then
check if the color is valid, and if it is, change the color and
reset the text box.

More info here: https://effbot.org/tkinterbook/entry.htm

...

def returnWrapper(canvas, data):

text = data.textbox.get()

if text in ["red", "yellow", "green", "blue"]:

data.color = text

data.textbox.delete(0, len(text))

redrawAllWrapper(canvas, data)

root.bind("<Return>", lambda ignore:

returnWrapper(canvas, data))

data.textbox = Entry(root)

data.textbox.pack()

...

https://effbot.org/tkinterbook/entry.htm

Radio Button Example
Finally, let's set up radio buttons so that the user can
select one of four color options.

Unlike buttons and text entries, we need to set up
multiple Radiobuttons and connect them to each other.
We do this by setting each of them to have the same
variable, or group value. That value (data.selection) will
update every time we click a radio button.

We then individualize the buttons with their text and
value, then set up event handlers to set the color to the
current value in data.selection whenever a button is
clicked.

More info here:
https://effbot.org/tkinterbook/radiobutton.htm

...

def radioWrapper(canvas, data):

data.color = data.selection.get()

redrawAllWrapper(canvas, data)

data.selection = StringVar()

data.selection.set("red")

for color in ["red", "yellow", "green", "blue"]:

b = Radiobutton(root, text=color, value=color,

variable=data.selection,

command=lambda : radioWrapper(canvas, data))

b.pack()

...

https://effbot.org/tkinterbook/radiobutton.htm

Learning Goals
Use state machines to organize all the possible interactions with an application.

Use widgets to provide different kinds of inputs and outputs in applications.

Read more about state machines here: https://en.wikipedia.org/wiki/Finite-state_machine

Find more widgets here: https://effbot.org/tkinterbook/tkinter-classes.htm

https://en.wikipedia.org/wiki/Finite-state_machine
https://effbot.org/tkinterbook/tkinter-classes.htm

Bonus Task

Bonus Task
Create a tkinter application that uses at least two different kinds of widgets (not counting
Canvas or the root Tk() window). At least one of the widgets must modify the state of the
application based on user input, through use of an event handler.

The widgets you use don't have to be the three shown in the examples- feel free to explore all
the options in the documentation!

Submit your code to the bonus4 assignment on Autolab by noon on Friday 7/26.

