
#11: Side-Scrolling and
Time-Based Animation
SAMS SENIOR CS TRACK

Last Time
Used input and output to creative interactive applications.

Used model, view, and event controllers to create interactive graphics.

Today's Learning Goals
Use side-scrolling to recognize the difference between the model and the view.

Use a time loop to create animations in interactive graphics.

MVC and Side-scrolling

Side-scrolling
In video games, it is often the case that the world the game takes place in is bigger than the
screen you play on. Video games use side-scrolling to let the character move around in that big
world.

A classic example of this is Mario. Mario implements horizontal side-scrolling.

https://supermarioemulator.com/mario.php

https://supermarioemulator.com/mario.php

Model vs View
To implement side-scrolling, you have to separate the model (the large world that Mario moves
around in) from the view (the part of the world that you the player can see).

To do this, we keep track of most of the model in terms of that larger world. But we also keep
track of two useful variables: data.scrollX and data.scrollY. These tell us where our screen is
with respect to the world.

Let's use a paper demo as an example...

Side-scrolling: Setup
def init(data):

data.mapWidth = data.width * 3
data.bushes = []
data.bushSize = 50
for bushX in range(0, data.mapWidth, data.bushSize):

data.bushes.append(bushX)
data.playerX, data.playerSize = 40, 30
data.groundY = data.height*2/3

def keyPressed(event, data):
playerSpeed = 10
if event.keysym == "Left":

data.playerX -= playerSpeed
elif event.keysym == "Right":

data.playerX += playerSpeed

def redrawAll(canvas, data):
for bushX in data.bushes:

canvas.create_oval(bushX, data.groundY - data.bushSize/2,
bushX + data.bushSize, data.groundY + data.bushSize/2,
fill="green")

canvas.create_rectangle(0, data.groundY, data.mapWidth, data.height, fill="tan4")
canvas.create_oval(data.playerX, data.groundY - data.playerSize,

data.playerX + data.playerSize, data.groundY, fill="red")

Side-scrolling: Player Movement
def init(data):

...
data.scrollX = 0

def keyPressed(event, data):
...
buffer = 10
if (data.playerX + data.playerSize + buffer) >= (data.scrollX + data.width):

data.scrollX += playerSpeed
elif (data.playerX - buffer) <= data.scrollX:

data.scrollX -= playerSpeed

def redrawAll(canvas, data):
for bushX in data.bushes:

canvas.create_oval(bushX - data.scrollX, data.groundY - data.bushSize/2,
bushX + data.bushSize - data.scrollX,
data.groundY + data.bushSize/2,
fill="green")

canvas.create_rectangle(0 - data.scrollX, data.groundY,
data.mapWidth - data.scrollX, data.height, fill="tan4")

canvas.create_oval(data.playerX - data.scrollX, data.groundY - data.playerSize,
data.playerX + data.playerSize - data.scrollX, data.groundY,
fill="red")

canvas.create_text(10, 10, text="scrollX: " + str(data.scrollX),
font="Arial 25 bold", anchor="nw")

Side-scrolling: Mouse Location
def init(data):

...
for bushX in range(0, data.mapWidth, data.bushSize):

data.bushes.append([bushX, "green"])
...

def mousePressed(event, data):
viewX = event.x
x = data.scrollX + viewX
y = event.y
for bush in data.bushes:

if bush[0] <= x <= (bush[0] + data.bushSize) and \
(data.groundY - data.bushSize/2) <= y <= data.groundY:
bush[1] = "purple"

def redrawAll(canvas, data):
for bush in data.bushes:

[bushX, color] = bush
canvas.create_oval(bushX - data.scrollX,

data.groundY - data.bushSize/2,
bushX + data.bushSize - data.scrollX,
data.groundY + data.bushSize/2, fill=color)

...

Big Idea
When writing interactive graphics code, always consider whether the data you're using is from
the point of view of the model or the view.

Converting between the two will then be easy!

Time-Based Animation

Animation
Animation is the process of making graphics look like they are moving by changing them slightly
as time passes. We can create animations in tkinter too!

Change Data Over Time
To animate graphics, we will add a time loop to our graphics framework. This time loop will call a
new function, timerFired(data), every data.timerDelay milliseconds. Therefore, the function will
be called at a specific rate over time.

By changing data in timerFired, we can make the program state change over time! And if we set
data.timerDelay to be a small number, like 100ms (or 10 times per second), the change will look
continuous.

To add timerFired, we'll have to update our starter code:

http://krivers.net/15112-s19/notes/notes-animations-part2.html#starter-code

http://krivers.net/15112-s19/notes/notes-animations-part2.html#starter-code

Example: tracking time passed
def init(data):

data.timerDelay = 1000 # one second
data.timeCount = 0

def keyPressed(event, data):
if event.keysym == "Up": data.timerDelay *= 2
elif event.keysym == "Down": data.timerDelay //= 2

def timerFired(data):
data.timeCount += 1

def redrawAll(canvas, data):
s = "Time Passed: " + str(data.timeCount) + "\n" + \

"timerDelay: " + str(data.timerDelay)
canvas.create_text(data.width/2, data.height/2, font="Arial 32 bold", text=s)

Example: moving shape
def init(data):

data.boxXSpeed = 10

data.boxX = 10

data.boxY = data.height/2

def timerFired(data):

data.boxX += data.boxXSpeed

def redrawAll(canvas, data):

canvas.create_rectangle(data.boxX - 20, data.boxY - 20,

data.boxX + 20, data.boxY + 20, fill="green")

Example: different rates
def init(data):

data.timerCount = 0
data.circles = []

def timerFired(data):
data.timerCount += 1
x, y = random.randint(0, data.width), random.randint(0, data.height)
data.circles.append([x, y, "red"])
if data.timerCount % 5 == 0:

x, y = random.randint(0, data.width), random.randint(0, data.height)
data.circles.append([x, y, "blue"])

def redrawAll(canvas, data):
for circle in data.circles:

[x, y, color] = circle
canvas.create_oval(x - 5, y - 5, x + 5, y + 5, fill=color)

Today's Learning Goals
Use side-scrolling to recognize the difference between the model and the view.

Use a time loop to create animations in interactive graphics.

