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Last Time
Used a time loop to create time-based animations.

Used randomness to simulate events.



Today's Learning Goals
Understand how efficiency changes how long a program takes to run.

Recognize that some problems probably can't be solved efficiently.

Recognize that other problems probably can't be solved at all!



Efficiency



Program Runtimes
So far, we've written programs that can run pretty quickly, usually because we're testing them 
on fairly small inputs.

When we test on larger inputs, programs can take longer to run...



Example: isLegalSudoku

def isLegalSudoku(board):

for row in range(len(board)):

for col in range(len(board)):

for block in range(len(board)):

if not isLegalRow(board, row):

return False

if not isLegalCol(board, col):

return False

if not isLegalBlock(board, block):

return False

return True

def isLegalSudoku(board):

for row in range(len(board)):

if not isLegalRow(board, row):

return False

for col in range(len(board)):

if not isLegalCol(board, col):

return False

for block in range(len(board)):

if not isLegalBlock(board, block):

return False

return True



Algorithmic Efficiency
These two implementations have one core difference: the number of operations that need to 
be performed.

If we say N = len(board), then the left isLegalSudoku calls each isLegal function N**3 
times. The right isLegalSudoku only calls each isLegal function N times!

In general, to improve algorithm runtime (and efficiency), we want to reduce the number of 
operations we need to perform. We especially want to pay attention to operations that grow 
larger as the input grows larger- that is, we care about operations that depend on N!



Calculating Runtime
We can actually test how long a program takes to run using the time library:

https://docs.python.org/3/library/time.html

time.time() returns the number of seconds since the epoch (when computers started 
recording time). We can use it to measure how long it takes a function to run:

t1 = time.time()

runFunction()

t2 = time.time()

print("Time passed: " + str(t2 - t1))

https://docs.python.org/3/library/time.html


Big-O Notation and Function Families
Computer scientists use Big-O notation to 
mathematically approximate the runtime of a 
program. Big-O notation tells us the function 
family a program runs in assuming the worst 
possible case.

Constant time (O(1)) and linear time (O(N)) 
are both fairly fast.

Polynomial time (O(N2), O(N3)) is slow, but 
okay.

Exponential time (O(2N), O(N!)) is horrible!



Improving Efficiency
If you have a program that takes a 
while to run, try to improve its 
efficiency by considering whether the 
program does unnecessary work, 
especially work that grows with the 
size of the input.

If you can reduce the order of the 
program's function family, you'll find 
that it starts running much faster!

What is the efficiency of the function 
on the right? Can we improve it?

def areLegalValues(lst): # assume len(lst) is a square num

for i in range(len(lst)):

for j in range(len(lst)):

if i != j and lst[i] == lst[j] and lst[i] != 0:

return False # check repeating values

found = False

for num in range(0, len(lst)+1):

if num == lst[i]:

found = True

if found == False: # check out of range

return False

return True



Example: subsetSum
Problem: Given a list lst of N elements and an 
integer target, can we find a sublist of lst that 
sums to target?

Solution: produce all possible sublists (using 
recursion), return the first one that sums to the 
target sum.

This works, but is slow on even medium-sized 
inputs! It runs in O(2n) time, because the number 
of possible sublists doubles every time we add a 
new element.

This is exponential, which is bad. Can we do 
better?

def subsetSum(lst, target):

if sum(lst) == target:

return lst

elif len(lst) == 0:

return None

tmp = subsetSum(lst[1:], target - lst[0])

if tmp != None:

return [ lst[0] ] + tmp

return subsetSum(lst[1:], target)



Verifying a Solution
Assume we have a magic box that can take in a 
list and produce an answer to subsetSum for 
that list. We want to check if this box is legit.

Discuss: How long does it take to verify that 
that answer is correct (is a subset of lst and 
sums to target)?

Answer: O(N2) for checking the subset, O(N) 
for checking the sum. Verifying is polynomial!

subsetSum([16,37,6,40,96,34,16,66], 112)

[16, 6, 40, 34, 16]



P vs. NP



Complexity Classes P and NP
There is a class of problems that can have solutions verified in polynomial time. This class is 
called NP, short for “non-deterministic polynomial time”. A function like solveSudoku is in NP.

There is another class of problems that can be solved in polynomial time. This class is called P, 
for polynomial. A function like isPrime is in P.

So far we’ve established that subsetSum is in NP. We don’t yet know whether it’s in P- maybe we 
could make a faster solution, and then it would be. In general, we know that P is a subset of NP 
(if we can solve in polynomial time, we can verify too!).



Problems in NP
There are lots of common and useful problems 
in the class NP, problems that we don’t have a 
polynomial-time solution for (yet). These 
include:

◦ Subset sum

◦ Optimized packing of items

◦ Route-planning (Travelling Salesman)

◦ Coloring a graph (solveSudoku)

◦ Scheduling with constraints (final exams)

◦ And many more...

https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/List_of_NP-complete_problems


P vs. NP
Big Idea: wouldn’t it be nice if all problems in NP were also in P? Then we could have fast 
solutions to lots of problems! (Though this would also break most encryption methods…) In 
other words, could P = NP?

Alternatively, if we can’t have this nice thing, wouldn’t it be great to prove that it’s impossible 
for some problem like subsetSum to have a polynomial-time solution, so we can stop wasting 
time trying to find one? In other words, can we show P != NP?

This question of whether or not P = NP is one of the most important problems in computer 
science. It’s also one of the seven Millenium Prize problems.

https://en.wikipedia.org/wiki/Millennium_Prize_Problems


How Can We Show P = NP?
If you want to demonstrate that P = NP, you need to show that all problems in NP are also in P.

There are a lot of problems in NP! To make this easier, computer scientists have identified a set 
of problems called NP-Complete that can make one solution usable across multiple NP 
problems.

We call a problem NP-Complete if it meets two requirements:
◦ it is in NP

◦ we can transform any problem in NP into it in polynomial time



Example: Graph Coloring
A classic NP-Complete problem is graph coloring. 
Given a graph, find a way to color the nodes so 
that no two connected nodes have the same 
color, using only a specific number of different 
colors.

We can demonstrate how this works by thinking 
about coloring a map. The states are nodes, and 
bordering states are connected by edges.

Let's show how we can use a solution to graph 
coloring to solve another NP problem, 
solveSudoku.



Graph Coloring to Sudoku Solving
1. Start with an unsolved Sudoku board.

2. Map the numbers 1-9 to 9 individual colors.

3. Create a graph with a node for each space in the Sudoku board. Give nodes colors if they 
already had numbers assigned.

4. Connect all nodes that were in the same row, column, or block with edges.

5. Send the graph to the graph coloring algorithm, and get the result.

6. Transform the result graph back into a Sudoku table, and the colors back into numbers.

7. You're done!

Note that all of the steps except step 5 can definitely be done in polynomial time.



How Can We Show P = NP?
If you find a solution to an NP-Complete problem (like graph coloring or subsetSum), you can 
make step 5 polynomial time.

That means that every other NP problem can be solved in polynomial time. In other words, you 
can solve all NP problems with just one NP-Complete solution!

Most researchers who are trying to show that P = NP take this approach.



How Can We Show P != NP?
If you want to demonstrate that P != NP, you need to prove that at least one NP problem cannot 
be solved in polynomial time.

How do we prove that it’s impossible to find a better solution? You need to consider all possible 
situations so you don’t miss an unusual, clever algorithm. Writing proofs like this is a large part 
of theoretical computer science.

Most computer scientists think that P != NP, but proving this is very tricky.



Conclusion
We can't yet prove whether or not P = NP, even though computer scientists have been working 
on this problem for years.

However, there are many other things that we can prove! Let's start with one basic question:  
are there any programs we can't write?



Computability



Computability
Computability theory is the study of defining algorithms/procedures, usually in a mathematical 
context.

Let's start with a more practical context. For a given program, can be ensure that that program 
works correctly?



Motivation
Two Boeing 737 jets have crashed in the past 
year, both seemingly due to technical errors in 
the automation system.

Why did this happen? Shouldn’t we be able to 
write code that we can be 100% sure will work 
correctly?



The Perfect Test Function
Goal: we want to write the ideal test function, 
one that will verify whether a given program 
returns the correct result on all possible 
inputs. Let’s call it testAll(f). Note that in this 
context, f will be a function- we can do this 
because function names are references, like 
variable names!

To test all possible inputs, we first need to 
make sure we don’t get infinite loops/infinite 
recursion on any input to our function. If we 
don’t check this, testAll(f) may take forever to 
run!

def testAll(f):

if not alwaysHalts(f):

return False

...



The Perfect Halting Function
New goal: write the program alwaysHalts(f), 
which returns True if f ‘halts’ (stops and 
returns a value) on all possible inputs to f.

To solve this, we must write the program 
halts(f, inp), which returns True if f halts on the 
given function and input, and False otherwise.

def alwaysHalts(f):

for inp in allPossibleInputs(f):

if not halts(f, inp):

return False

return True

The Halting Problem: can we write a program to do this?



No.

Let’s use a Proof by Contradiction to show why.



Proof by Contradiction
To show that the program halts() cannot exist, 
we only need to find one program f and one 
input inp such that it is impossible for 
halts(f, inp) to return the correct result.

To do this, let’s design a program, 
breakHalts(f), which uses halts to break itself.

Here’s the big question: does breakHalts halt 
when given itself as an input, or not?

def breakHalts(f):

inp = f

if halts(f, inp):

print('Running forever!')

while True: pass

else:

print('Halting!')

return



Case One: breakHalts() halts
Assume that breakHalts(breakHalts) does halt. 

Therefore, halts(breakHalts, breakHalts) 
should return True, and we enter the if case.

Then we enter an infinite while loop… and the 
program never halts.

CONTRADICTION!

def breakHalts(f):

inp = f

if halts(f, inp): # True

print('Running forever!')

while True: pass

else:

print('Halting!')

return



Case Two: breakHalts() Loops Forever
Assume that breakHalts(breakHalts) will not 
halt, and will instead loop forever.

Therefore, halts(breakHalts, breakHalts) 
should return False, and we enter the else 
case.

But then we immediately return, which means 
the program halts!

CONTRADICTION!

def breakHalts(f):

inp = f

if halts(f, inp): # False

print('Running forever!')

while True: pass

else:

print('Halting!')

return



Some Functions are Uncomputable
We just showed that it is impossible to write the program breakHalts and call it on itself. But the 
program we used only had one unusual bit of code- the call to halts(). Therefore, it is impossible 
to write the program halts().

Since we can’t write halts(), we can’t write alwaysHalts(), and since we can’t write alwaysHalts(), 
we can’t write testAll(). These problems are uncomputable- we cannot write a program to 
compute them, no matter how clever we are.

Takeaway: there are some programs that are simply impossible to write!



We still need to write programs.

Can we make them fast and correct?



How to Solve a Problem in NP?
Option 1: only run your function on small inputs. (Then bad efficiency doesn’t matter)

Option 2: use heuristics to find a ‘good-enough’ solution

Example: scheduling final exams at CMU

Big Idea: if you can identify when your algorithm is non-polynomial, you can find workarounds 
to deal with it!



How to Verify that your Code Works?
We can’t write a universal test function for code.

But we can prove that certain functions will behave as expected on certain classes of inputs.

We can also use contracts to ensure that functions only accept certain types of input and only 
return certain types of output.

Big Idea: test your code well and often and it will be robust, if not perfect.



Today's Learning Goals
Understand how efficiency changes how long a program takes to run.

Recognize that some problems probably can't be solved efficiently.

Recognize that other problems probably can't be solved at all!


