
#2: Graphics Part 1
SAMS SENIOR NON-CS TRACK

Last time
Learned what programming is

Used data values and operations to compute values

Used debugging to identify errors in code

Ex1-1 Feedback
Go to Autolab and click on ex1-1 > View handin history

If you click on the blue scores, you can see your feedback!

Most of the problems went well, but the error identification problem was a bit rough. Let's go
over that now.

Today's Learning Goals
Recognize how a computer makes images from pixels

Use code to draw rectangles and ovals in the window

Graphics

Pixels
The image shown by your computer screen
isn't continuous, like a real-world object.
Instead, it is a two-dimensional grid of pixels.

A pixel is a dot on the screen that has a
specific color. Pixels tend to be very small, so
we don't notice them most of the time.

Fun fact: you can change how many pixels are
used to form the images on your screen! If you
go to your computer's Display settings, you can
tell it how many pixels tall and wide the screen
should be.

Drawing with code
There are many ways to approach making
images to code. We're going to use an
approach that draws basic shapes based on
pixel coordinates. By combining many different
shapes, we can make more advanced images!

We'll start today by drawing rectangles and
ovals; on Thursday we'll add in text, lines, and
polygons.

Here are two pictures your classmates in the
CS track made last week!

Tkinter Canvas
In Python, we can draw graphics on the screen using many different modules. We'll use Tkinter
in class because it's built-in, but there are other options for outside of class (turtle, pygame,
Panda3D...)

Tkinter creates a new window on the screen and puts a canvas into that window. We'll call built-
in functions on that canvas in order to draw on it.

NOTE: Tkinter documentation can be found at
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas.html

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas.html

Tkinter starter code
We'll use the code on the right to set up the
window and canvas when we want to draw
graphics. It's okay to not understand what
this code does for now.

You can write your own code where the
comment says # Put your code here!

Every time we run this code, it will generate
a new window. We can close the window by
pressing the x in the top corner; that will let
the code move on to whatever we've written
next.

from tkinter import *

Don't worry about what the next four lines of code do

root = Tk()

canvas = Canvas(root, width=400, height=400)

canvas.configure(bd=0, highlightthickness=0)

canvas.pack()

Put your code here!

root.mainloop() # this tells the window to stay open until we close it

Coordinates on the Canvas
The canvas is a two-dimensional grid of pixels, where each pixel can be filled with a dot of color.
This grid has a pre-set width and height; the number of pixels from left to right and the number
of pixels from top to bottom.

We can refer to pixels on the canvas by their (x, y) coordinates. However, these coordinates are
different from coordinates on normal graphs- they start at the top left corner of the canvas.

(0, 0) (width, 0)

(0, height) (width, height)

canvas

Built-in Canvas Functions
In order to draw on the canvas, we'll need to call functions that will change how it looks.

A function is Python's way of remembering how to do an action, or a series of actions. The print
command from last week is a built-in function.

We can call a function on a number of parameters, which then give the function information about
what to do. These parameters are just values, like the numbers we used last time.

To call a function on the canvas, we'll use the following syntax:

canvas.<function_name>(<parameters>)

Drawing a rectangle
To draw a rectangle, we use the function create_rectangle. This function takes four required
parameters: the x and y coordinates of the top-left corner, and the x and y coordinates of the
bottom-right corner. The rectangle will then be drawn between those two points.

canvas.create_rectangle(10, 50, 110, 100)

(10, 50) (110, 50)

(10, 100) (110, 100)

Exercise 1: Draw a rectangle
Go to the schedule page and download the starter file for today's lecture. You'll write exercise
code under the comment with the exercise's number.

Exercise 1: write a line of code that draws a 100px x 200px rectangle from the coordinate (100,
125) to the coordinate (200, 325).

Note- every time you close the graphics window, it will move on to the next exercise. This is
normal and okay.

Placing Shapes
It can be difficult sometimes to find the right coordinates for putting a shape in exactly the correct
location. There are a few techniques that can make finding coordinates easier, though.

1) Try drawing images on paper before writing the code. Divide the paper up into segments to figure
out approximately where the drawn shapes are located, then use those coordinates.

2) Work from reference points in the shapes. If you know where the corner of a shape should be,
determine the opposing corner using the size. If you know the center and the size, subtract/add half
the size to get the left/right sides.

3) Guess and check! Try adding a single shape to the image, then run the code to see where it shows
up. You can then adjust the coordinates to move it or change the size as needed.

Rectangle Parameters
We can also add many optional parameters to the rectangle function to change the rectangle's appearance. An
optional parameter is set up with the syntax:

canvas.create_rectangle(<x1>, <y1>, <x2>, <y2>, <parameter_name>=<value>)

For rectangles, we'll use two different kinds of optional parameters: fill and outline. On any given
create_rectangle call, we can use one, both, or neither of this parameters. Here are all the color names we can
use: http://www.science.smith.edu/dftwiki/index.php/Color_Charts_for_TKinter

canvas.create_rectangle(10, 50, 110, 100, fill="yellow") # makes rectangle yellow

canvas.create_rectangle(10, 50, 110, 100, outline="red") # makes border red

http://www.science.smith.edu/dftwiki/index.php/Color_Charts_for_TKinter

Exercise 2: Draw a colored square
Exercise 2: write a line of code that draws a square in the middle of the 400px x 400px screen
that is yellow with a red outline. The square can be whatever size you want, but should be
centered in the screen.

Hint: to center the rectangle, note that the middle point of the screen is (200, 200). You should
set your coordinates so that left and right are equally spaced around 200, as are top and bottom.

Note: you'll need to close the window from the first exercise to check your work on the second.

Drawing an oval
We can draw more shapes than just rectangles. To draw an oval, use create_oval. This function
uses the same parameters as create_rectangle, where the coordinates mark the oval's bounding
box. create_oval also has the same optional parameters as create_rectangle.

canvas.create_oval(10, 50, 110, 100, fill="blue")

(10, 50) (110, 50)

(10, 100) (110, 100)

Exercise 3: Draw a top-right circle
Exercise 3: write a line of code that draws a purple circle in the top-right corner of the 400px x
400px window. The circle can be whatever size you want, but should be centered in that top-
right quadrant.

This is demonstrated below (you don't have to draw the square or lines):

Drawing multiple shapes
If we draw more than one shape, the shapes can overlap! Shapes which are drawn later are drawn
on top.

canvas.create_rectangle(0, 0, 150, 150, fill="yellow")

canvas.create_rectangle(100, 50, 250, 100, fill="orange")

canvas.create_rectangle(50, 100, 150, 200, fill="green", outline="red")

canvas.create_rectangle(125, 25, 175, 190, outline="purple")

Exercise 4: Draw a picture!
Exercise 4: using draw_rectangle and
draw_oval as many times as needed, draw the
picture to the right on the canvas.

Your image doesn't need to be pixel-perfect
the same, but should have all the same
components to get full credit.

Suggestion: this has a lot of parts! Start by
drawing just the left side of the image. If you
can get that working, you can mimic the code
to create the right side.

Today's Learning Goals
Recognize how a computer makes images from pixels

Use code to draw rectangles and ovals in the window

