
#4: Functions and Scope
SAMS SENIOR NON-CS TRACK

Last Time
Use variables to hold and update data

Use input and output to write code that supports user interaction

Ex3-1 Feedback
Excellent work- everyone got most of the problems right!

Today's Learning Goals
Use functions to hold and execute processes

Understand how scope changes where we can access variables

Functions

Functions are Processes
We've now used variables as a way to store data so that it can be used several times. Functions
are similar to variables, except that we'll use them to store processes so that they can be used
multiple times.

We'll define a process to be a sequence of statements that have some effect. Often, we'll only
be able to see the end result of the process, even if more work is being done behind the scenes.

Built-in Functions
We'll start by considering functions that
Python has already implemented. These are
automatically available whenever you run
Python.

We can call a built-in function by using the
function's name, then following it with
parentheses. We'll provide any values the
function needs for its computations inside the
parentheses. We call these values arguments.

We've already used a few built-in functions in
the class, as is shown to the right.

print("Hello World")

canvas.create_rectangle(0, 0, 400, 400)

input("What's your name?")

str(56) # changes integers to strings

int("4") # changes strings to integers

Note that some functions (print and
canvas.create_rectangle) make a change, while others
(str and int) produce a value that can be used directly.

More Built-in Functions
There are plenty of other built-in functions in Python that we can use! This includes:

len("Hello World") # evaluates to the length of the given string

float("6.591") # changes the string to a decimal number (floating-point)

max(4, 6, 2) # evaluates to the maximum number provided as an argument

min(3, 9, -5) # evaluates to the minimum number provided as an argument

round(3.14159, 2) # evaluates to the first number rounded to

the second number of digits

For a full list, check out https://docs.python.org/3/library/functions.html

https://docs.python.org/3/library/functions.html

Exercise 1: Rounding
Go to the schedule page and download the starter file for today's lecture. You'll write exercise
code under the comment with the exercise's number.

Exercise 1: Write one or more lines of code that interactively asks the user to enter a number,
then prints out that number rounded to one decimal place.

For example, if I entered "4.234", it would print 4.2; if I entered "6.591", it would print 6.6

Defining a Function
We're not limited to the functions that Python has already defined- in fact, we can define our
own functions, and then try calling them!

At the most basic level, a function needs to have a name and a body. The name is how we will
refer to the function; the body is the process that the function performs. Here's an example:

def <functionName>():

<functionBody>

Indentation
Unlike previous code we've written, a single function needs to be defined across multiple lines. This can be just two lines (if the
body is only one lines), or much more! How can Python keep track of what should be in the function and what should not?

We designate which lines should be in the function's body by indenting them (putting whitespace before the start of the text).
In general, Python uses indentation to specify when one or more lines of code should be considered a 'block'. We'll need to use
the same amount of leading whitespace for all the lines of the block. We often use a tab, or four spaces.

def greetPerson(): # Note that each line starts with four spaces

name = input("What is your name?")

print("Hello, " + name + "!")

print("Welcome to class.") # This line is outside the function, not part of the process

We call code that happens outside of functions top-level code.

Calling our function
Once we have defined a function in a file, we can call it to run the code inside the function. To
do this, we just need to refer to the name of the function, then put parentheses after it.

def greetPerson():

name = input("What is your name?")

print("Hello, " + name + "!")

print("Welcome to class.")

greetPerson() # We're calling the function here!

greetPerson() # And call it again here!

Exercise 2: Hello World Redux
Exercise 2: write a function called helloWorld which takes no input and simply prints the string
"Hello, World!". Then call this function three times at the top-level of the code, so that "Hello,
World!" is printed three times overall.

Parameters hold Input Values
Sometimes we want to provide additional information to a function that will change what it does (like
how str() takes in information about the number it should change). To do this, we need to add
parameters to the function definition.

Parameters are just variable names, but instead of being given starting values, they're put into the
parentheses after the function name. These parameters will be assigned values when we call the
function, and not before.

def <functionName>(<parameters>):

<functionBody>

Note that we can have 0 parameters [()], 1 parameter [(param1)], 2 parameters [(param1, param2)], etc...

Parameter Example
If we use parameters, we can change our greeting program from before to take a name as a
parameter instead of using input. Note that we now provide the name directly when we call the
function. The function itself needs to use the abstract idea of a name instead of a direct value!

def greetPerson(name):

print("Hello, " + name + "!")

print("Welcome to class.")

greetPerson("Gloria") # Here, name is set to "Gloria"

greetPerson("Denise") # And here it's set to "Denise"

Exercise 3: drawCircle
Exercise 3: write the function
drawCircle(canvas, x, y, r). This function takes
four parameters – the canvas, an (x,y)
coordinate, and an integer r – and uses them
to draw a circle centered at (x,y) with radius r.

Then call drawCircle at the top-level of the
code with three different coordinates (and
three different radii) to produce a picture with
three circles in different locations on the
canvas. An example is shown to the right (you
don't need to mimic this exactly!).

Return Provides an Output Value
Finally, sometimes we want to make our function produce a specific value that we can then use in expressions
later on (like how int('4') produces a 4). We call this returning a value from a function, and we do this by including
a return statement in the function body.

When we run a return statement, it takes the value next to it and sends it back to the location where the function
was called originally. It will then substitute in that value in the place where the function was called.

def <functionName>(<parameters>):

<functionBody>

return <functionResult>

As soon as we return, the function will end, so for now we always want the return statement to be the last
statement in the body. Also, note that we can't write a return statement outside of a function!

Using Returned Values
Adding a return statement lets us write functions that will produce output, so that we can use that output in
calculations. For example, we can write a function that will help us compute how large to draw a square if we
want it to fill the canvas with a certain size of margin.

def squareSize(windowSize, margin):

return windowSize - 2 * margin

canvas.create_rectangle(10, 10, 10 + squareSize(width, 10),

10 + squareSize(height, 10))

Note that I can call squareSize on (width, 10) assuming that width has already been defined. When we evaluate
10 + squareSize(width, 10), the function call will run, produce a result, then add that result to 10.

Another Type: None
What happens if we don't put a return statement in a function? The function will then return nothing-
or, more specifically, the None value.

None is a unique built-in value. We can use it to tell the user that there is no returned result from the
function

def greeter(name):

print("Hello, " + name + "!")

print("Result:", greeter("Kelly"))

Note that the first printed value is the message printed by greeter(), but the second is Result: None,
since greeter() did not actually return a value.

Exercise 4: Semicircle Perimeter
Exercise 4: write the function circlePerimeter(r)
which takes a radius (r) and returns the
perimeter of a circle with that radius. Recall that
we calculate a circle's perimeter with 2πr. (You
can use math.pi to get the value of π).

Then, at the top level of the code, write a line of
code that prints the perimeter of a semicircle
with a radius of 20. You must call your
circlePerimeter() function to get full credit!

Hint: note that a semicircle has half the
perimeter of a circle, plus a flat line that is equal
to twice the radius.

r

Defining a Function: Example
In general, when we create a function, we want to identify an appropriate identifier, input, output, and process
for that function. These values will directly translate to the function's name, parameters, return value, and body.

Say we want to define a function that converts money into a number of quarters. Our function components are:

Name: convertToQuarters

Parameter: money

Body: numQuarters = money / 0.25

Result: return numQuarters

def convertToQuarters(money):

numQuarters = money / 0.25

return numQuarters

Scope

Functions have a different scope
When we define variables inside a function, they only exist inside the function. We can't call
them in the main code body.

Example:

def convertToQuarters(money):

numQuarters = money / 0.25

return numQuarters

print(numQuarters * 4) # will crash

Scope Organizes Names
This happens because Python considers function
bodies to be in a different scope that the top-level
code. We can only access variables in the scope in
which they are defined.

One way to think about this is that a variable's name is
its first name, but it's function name (or the top level)
is its last name. You might have the same first name as
another person at your school, but you probably have
a different last name, and that helps to distinguish
between the two of you.

In the example to the right, note that when we print x
at the end, it doesn't change to 9 or 11. This is because
x top-level is separate from x foo.

def foo(x): # This is x foo

x = x + 2

return x

x = 5 # This is x top-level

print(f(9))

print(x)

You Do: Code Tracing
What will the code to the right print out when
we run it?

Try predicting the answer by writing out the
steps on paper.

def a(x):

y = 5

return x + y

def b(x, y):

return x - y

x = 10

print(a(x) + b(9, 4))

print(x)

print(y)

Functions Can Call Functions
We're not restricted to calling functions only at the top-level- we can also call functions inside of
other functions!

def a(x):

return x * 2

def b(y):

return a(y) – 1

print(b(10))

This lets us write special functions that we'll call helper functions. We'll use these when we need to
solve large or complicated problems, to break up the work into multiple parts.

The Stack Tracks Function Calls
When a program is calling multiple functions, how do we keep track of which function we're currently
in and where the return values should be sent?

Python keeps track of something called a stack, which is basically a list of all of the places in the code
where we need to eventually return a value. When we reach a return statement, Python removes the
current value of the stack and goes back to the previous one.

In the following example, when we've reached line 2, the stack would look like this:

1: def a(x):
2: return x * 2
3: def b(y):
4: return a(y+1) – 1
5: print(b(10))

Line 5 – called b() on 10
Line 4 – called a() on 11
Line 2 – return 11 * 2 to previous item in stack

Exercise 5: trianglePerimeter
Exercise 5: write the function trianglePerimeter(x1, y1,
x2, y2, x3, y3) which takes three coordinates – (x1, y1),
(x2, y2), and (x3, y3) – and calculates the perimeter of
the triangle made by connecting those three points.

To make solving this problem easier, you should also
write the function distance(x1, y1, x2, y2) which takes
two coordinates – (x1, y1) and (x2, y2) – and calculates
the distance between them. You should then call
distance() from trianglePerimeter().

Finally, print out the result of calling trianglePerimeter
on the points (0, 50), (20, 30), and (70, 80) to find the
perimeter of that triangle!

(20, 30)

(0, 50)

(70, 80)

Today's Learning Goals
Use functions to hold and execute processes

Understand how scope changes where we can access variables

