#6: Booleans and
If Statements

SAMS SENIOR NON-CS TRACK

Last Time

Use functions to hold and execute processes

Ex 3-2 Feedback

The functions assignment seems to have been somewhat difficult, especially #3 (parameters)
and #4 (returning).

Let's go over how to solve those two problems.

Defining a Function: Example

In general, when we create a function, we want to identify an appropriate identifier, input, output, and process
for that function. These values will directly translate to the function's name, parameters, return value, and body.

Say we want to define a function that converts money into a number of quarters. Our function components are:
Name: convertToQuarters

Parameter: money

Body: numQuarters = money / 0.25

Result: return numQuarters

def convertToQuarters(money):
numQuarters = money / 0.25

return numQuarters

Today's Learning Goals

Understand how scope changes where we can access variables

Use Booleans to compute whether an expression is True or False

Use if statements to make choices about program control flow

Scope

Functions have a different scope

When we define variables inside a function, they only exist inside the function. We can't call
them in the main code body.

Example:
def convertToQuarters(money):
numQuarters = money / 0.25

return numQuarters

print(numQuarters * 4) # will crash

Scope Organizes Names

This happens because Python considers function def foo(x): # This is x foo
bodies to be in a different scope that the top-level
code. We can only access variables in the scope in X =X+ 2

which they are defined.
return X

One way to think about this is that a variable's name is
its first name, but it's function name (or the top level)
is its last name. You might have the same first name as
another person at your school, but you probably have
a different last name, and that helps to distinguish .

between the two of you. print(£(9))

X =5 # This is x top-level

print(x)

In the example to the right, note that when we print x
at the end, it doesn't change to 9 or 11. This is because
x top-level is separate from x foo.

You Do: Code Tracing

What will the code to the right print out when def a(x):
we run it?

y =5
return x + vy

Try predicting the answer by writing out the
v P & yWHHng def b(x, y):

steps on paper.
return x -y

X = 10

print(a(x) + b(9, 4))
print(x)

print(y)

Functions Can Call Functions

We're not restricted to calling functions only at the top-level- we can also call functions inside of
other functions!

def a(x):

return x * 2
def b(y):

return a(y) - 1
print(b(10))

This lets us write special functions that we'll call helper functions. We'll use these when we need to
solve large or complicated problems, to break up the work into multiple parts.

The Stack Tracks Function Calls

When a program is calling multiple functions, how do we keep track of which function we're currently
in and where the return values should be sent?

Python keeps track of something called a stack, which is basically a list of all of the places in the code
where we need to eventually return a value. When we reach a return statement, Python removes the
current value of the stack and goes back to the previous one.

In the following example, when we've reached line 2, the stack would look like this:

1: def a(x):

2: return x * 2 Line 5 — called b() on 10

3: def b(y): Line 4 — called a() on 11

4: return a(y+1) - 1 Line 2 — return 11 * 2 to previous item in stack
5: print(b(10))

Exercise 1: trianglePerimeter

Exercise 1: write the function trianglePerimeter(x1, y1,
X2, Y2, X3, y3) which takes three coordinates — (x1, y1),
(x2, y2), and (x3, y3) —and calculates the perimeter of
the triangle made by connecting those three points. (20, 30)

To make solving this problem easier, you should also

write the function distance(x1, y1, x2, y2) which takes (0, 50)
two coordinates — (x1, y1) and (x2, y2) — and calculates ’

the distance between them. You should then call

distance() from trianglePerimeter().

(70, 80)

Finally, print out the result of calling trianglePerimeter
on the points (0, 50), (20, 30), and (70, 80) to find the
perimeter of that triangle!

Booleans

True-ness and False-ness

So far, we've learned about a few different data types in Python: integers, floats, and strings.

Now we'll learn about another data type that may prove useful: Booleans. A Boolean can be one

of two values, True or False. These can be typed into a Python expression directly, as you'd type
in a variable or a number.

print("Yes", True)

print("No", False)

Comparisons Create Booleans

We normally create Boolean values by comgarin expressions in Python. A comparison between two
values will always evaluate to True or False based on whether the comparison is correct as stated.

Here are some standard examples:
print("Less than", 4 < 5) # can also use > for greater than

print("Greater than or equal to", 13 >= (7.2 + 10.3)) # can also use <=

Note that the comparison always takes the format <exp1> <operator> <exp2>.

We can also check whether two expressions are exactly equal, or are not equal:

print("Equal”, (20 - 5) == 19) # note we use two equal signs, not one

print("Not equal", 2 != @) # note that the ! negates the equality check

Comparing Strings

We already know how to compare numbers in real life. Comparing strings is a bit different, but
we can do that too!

print("Equality"”, "Hello" != "Goodbye")

When we want to see whether one string is less than another, we compare them character-by-
character. Each character is associated with an ASCIl value, and we'll compare those integer
values directly. You can get a character's ASClI value by callingord(char).

print("Comparison", "goodbye" < "hello") # "g" comes before "h",

so "goodbye" comes first

ASCII Table

d . d . Dec HyxOct Char Dec Hx Oct Htrl Chr |Dec Hx Oct Html Chr| Dec Hi Oct Himl Chr
You don't need to memorize ASCIl 7 o0 wr mursy 32 20 040 #32; Gpace] 64 40 100 £64r B | 86 60 140 s#%6:
1 100l 50H {start of heading) 33 21 041 ! ! 65 41 101 s#65; A | 97 61 141 «#397; =
values- you can always look them > 3 00p ome iorary oF Beed 2 5% 04 o434 " | o8 42 102 e#66s B | o8 oz 14z es%6s b
. tabl 3 3 003 ETX (end of text) 35 23 043 «#35; # 67 43 103 C C | 90 &3 143 <#99; ©
up In a tabie. 4 4004 EOT {end of transmission) | 36 24 044 c#36; ¢ 68 44 104 D D |100 64 144 s#100; 4
5 5 005 ENQ {endquiry) 37 25 045 % % 63 45 105 E E |10l 65 145 s#101; e
6 & 006 ACE (acknowledge) 38 26 046 & & 70 46 106 F F |102 66 146 s#l02; ©
7 7 007 BEL {bell} 39 27 047 ' 71 47 107 G G |103 67 147 g o
& & 010 BS (backspace] a0 28 050 (| 72 48 110 H H |104 68 150 s#104; b
9 9 011 TAE ({horizontal tab) 41 29 051)) 73 40 111 I I |105 69 151 s#105; i
P 10 & 012 LF (WL line feed, new line)| 42 2A 052 s#42; * 74 4h 11z J 7 |106 64 152 s#106; 7
Note that the dlgltS 0'9, the 11 B Ol3 VT (vertical tab) 43 2B 053 o#43; + 75 4F 113 K ¥ |107 6B 153 s#107; k
12 C 0l4 FF (NP form feed, new page)| 44 2C 054 «#44; , 76 AC 114 s#76; L |108 6C 154 s#108; 1
letters A‘Z, and the letters a-z are 13 D 0L5 CR (carriage return) a5 2D 055 - - 77 4D 115 M M |109 6D 155 s#108; n
. . 14 E 016 50 (shift out) A6 2E 056 . . 78 4E 116 N N |110 6E 156 s#ll0; n
all in order. This means we can 15 FOL7 81 (shife in) 47 7F 057 ¢#47: /| 79 4F 117 479 0 |LLL 6F 157 efLLls o
. . 16 10 020 DLE (data link escape) 48 30 060 0: 0 80 50 120 P F 112 70 160 s#ll2; b
eaS||y compare Strlngs that Only 17 11 021 DCL {dewice control 1) 40 31 061 s#48; 1 81 5L 121 Q 0 113 71 161 s#l13: o
. . 18 12 022 DCZ {device control Z) 50 32 062 2 2 52 52 122 R R |114 72 162 s#lld; r
contain characters in one of the 19 13 023 DC3 (device control 3) 51 33 063 c#51: 3 83 53 123 S 5 115 73 163 s#l15; s
h 20 14 024 DC4 {device control 4) 52 34 064 4 4 54 54 124 T T |116 74 164 s#lls; ©
three groups. 21 15 025 NAE (negative acknowledge) | 53 35 065 5 5 85 55 125 s#85; U |117 75 165 s#117; u
22 16 026 STN (synchronous idle) 54 36 066 6 6 B6 56 126 V V |118 76 166 s#lla: v
23 17 027 ETE (end of trans. block] | 55 37 067 7 7 87 57 127 W W |119 77 167 s#l13; w
24 18 030 CAN ({cancel) 56 38 070 8 & 88 56 130 X 3 120 78 170 s#120; x
25 19 031 EM {end of medium) 57 39 071 «#57; 9 89 50 131 Y ¥ (121 79 171 s#l2l; ¥
26 14 032 SUB (substitute) 58 3A 072 : : 90 54 132 Z Z 122 7A 172 s#l22; Z
1 . . 27 1B 033 ESC (escape) 53 3B 073 ; 91 5B 133 [[|123 7B 173 s#123; |
For now, we | malnIYJUSt check 26 IC 034 FS (file separator) 60 3C 074 < < 02 50 134 \ Y |124 7C 174 <#124; |
. . . 29 1D 035 33 (group separator) gl 3D 075 &#al; = 93 5D 155] 1 |125 7D 175 } |
. 30 1E 036 RS (record separator) 62 3E 076 o#62: > 04 SE 136 ^ ~ |126 7E 176 s#l26; ~
equality for strings, not orderin
31 IF 037 US {unit separator) 63 3F 077 #63; 2 95 5F 137 _ (127 7F 177 DEL

Source: www.LookupTables.com

Exercise 2: power compare

Exercise 2: at the top level, set up two variables, x and y, that start off holding the values 3 and
5. Then write a line of code that prints out True if x¥ is greater than yX, or False if not.

Note - your code should still work if the numbers inside x and y are changed.

Combining Booleans

We aren't limited to only evaluating a single Boolean expression! We can combine Boolean
values using logical operations. We'll learn about three- and, or, and not.

Combining Boolean values will let us check complex requirements while running code.

And Operation

The and operation takes two Boolean values

and evaluates to True if both values are True.
In other words, it evaluates to False if either

value is False.

We use an.d.when we want to require that _ False
both conditions be met at the same time.

Example:

(x >=0) and (x < 10)

Or Operation

The or operation takes two Boolean values and
evaluates to True if either value is True. In

other words, it only evaluates to False if both
values are False.

We use or when there are multiple valid True True

conditions to choose from

Example:

(day == "Saturday") or (day == "Sunday")

Not Operation

Finally, the not operation takes a single
Boolean value and switches it to the opposite
value (negates it). not True becomes False, and
not False becomes True.

We use not to switch the result of a Boolean m False True

expression. For example, not (x < 5) is the
same as x >=5,

Example:

not (x == Q)

Boolean Order of Operations

Like with math operations, Boolean operations will evaluate in a specific order. not comes first,
then and, then or. However, it can be a pain to keep track of this ordering while coding.

To make code easier to read, always use parentheses to designate which operations you want to
happen first! This is safer than trying to remember how the operations will be ordered.

X = 10

print((x > 5) or ((x**2 > 50) and (x == 20))) # True
print(((x > 5) or (x**2 > 50)) and (x == 20)) # False

Exercise 3: cloneChecker

Exercise 3: write a function, cloneChecker(name, age), that takes a string (a person's name) and
a number (their age). This function returns True if the given name is the same as yours and the
age is within one year of yours, or False otherwise.

Then call the function and print out its output twice- first on an input that makes it return True,
then on an output that makes it return False.

For example, Prof. Kelly is 30 years old, so for her function, "Kelly" and the age 29, 30, or 31
would result in the code returning True. On the other hand, "Kelly" and the number 18 or
"Chloe" and the number 30 would result in the code returning False.

Conditionals

Control Flow

The next few topics we cover will revolve around the idea of control flow, or the order in which
programming commands are run.

So far, all the code we've written is run sequentially. Each line is read and evaluated in order.
Functions changed this slightly, but we can still imagine inserting each function's code into the
place where the function is called to get step-by-step code.

This next unit will help us write code that is only executed in certain circumstances. This lets our
code really react to the input that we provide it!

Conditionals

Sometimes we need to change what a program does based on the given input. We can do this
using conditional statements. These statements choose what the program will do next based on

whether or not a boolean expression is True.

if <boolean_expression>:

<body if true>

Note that, as with functions, conditionals use indentation to specify which lines belong to the
conditional, and which lines don't. A conditional must have at least one line in the body, but can

have more than that as well.

Conditional Example

In the following example, the code will only print "I see you!" if the boolean variable visibleis
set to True. However, it will always print "start" and "finish".

print("start")
if visible == True:
print("I see you!")

print("finish")

Exercise 4: media test

Exercise 4: at the top level, write a few lines For example, Prof. Kelly's current favorite book is
of code that asks the user what their favorite Skyward. So if the user inputted a different book
[:I:,qong/hrp)ovie/book/tv show] is (just pick one, (like "The Dark Tower"), her program might print:
though!).

"I like reading paper books."
If the user's favorite is the same as yours,
print out a special message for them. Then,
whether or not they had the same favorite,

print out a general message about that type But if the user inputted "Skyward", her program
of media. would print:

Feel free to get creative with your messages! "I love that book too! Brandon

And if you finish with time to spare, try Sanderson is fantastic.

creating a conversation by adding more
inputs and more responses.

"I like reading paper books."

Today's Learning Goals

Understand how scope changes where we can access variables

Use Booleans to compute whether an expression is True or False

Use if statements to make choices about program control flow

