
#6: Booleans and
If Statements
SAMS SENIOR NON-CS TRACK

Last Time
Use functions to hold and execute processes

Ex 3-2 Feedback
The functions assignment seems to have been somewhat difficult, especially #3 (parameters)
and #4 (returning).

Let's go over how to solve those two problems.

Defining a Function: Example
In general, when we create a function, we want to identify an appropriate identifier, input, output, and process
for that function. These values will directly translate to the function's name, parameters, return value, and body.

Say we want to define a function that converts money into a number of quarters. Our function components are:

Name: convertToQuarters

Parameter: money

Body: numQuarters = money / 0.25

Result: return numQuarters

def convertToQuarters(money):

numQuarters = money / 0.25

return numQuarters

Today's Learning Goals
Understand how scope changes where we can access variables

Use Booleans to compute whether an expression is True or False

Use if statements to make choices about program control flow

Scope

Functions have a different scope
When we define variables inside a function, they only exist inside the function. We can't call
them in the main code body.

Example:

def convertToQuarters(money):

numQuarters = money / 0.25

return numQuarters

print(numQuarters * 4) # will crash

Scope Organizes Names
This happens because Python considers function
bodies to be in a different scope that the top-level
code. We can only access variables in the scope in
which they are defined.

One way to think about this is that a variable's name is
its first name, but it's function name (or the top level)
is its last name. You might have the same first name as
another person at your school, but you probably have
a different last name, and that helps to distinguish
between the two of you.

In the example to the right, note that when we print x
at the end, it doesn't change to 9 or 11. This is because
x top-level is separate from x foo.

def foo(x): # This is x foo

x = x + 2

return x

x = 5 # This is x top-level

print(f(9))

print(x)

You Do: Code Tracing
What will the code to the right print out when
we run it?

Try predicting the answer by writing out the
steps on paper.

def a(x):

y = 5

return x + y

def b(x, y):

return x - y

x = 10

print(a(x) + b(9, 4))

print(x)

print(y)

Functions Can Call Functions
We're not restricted to calling functions only at the top-level- we can also call functions inside of
other functions!

def a(x):

return x * 2

def b(y):

return a(y) – 1

print(b(10))

This lets us write special functions that we'll call helper functions. We'll use these when we need to
solve large or complicated problems, to break up the work into multiple parts.

The Stack Tracks Function Calls
When a program is calling multiple functions, how do we keep track of which function we're currently
in and where the return values should be sent?

Python keeps track of something called a stack, which is basically a list of all of the places in the code
where we need to eventually return a value. When we reach a return statement, Python removes the
current value of the stack and goes back to the previous one.

In the following example, when we've reached line 2, the stack would look like this:

1: def a(x):
2: return x * 2
3: def b(y):
4: return a(y+1) – 1
5: print(b(10))

Line 5 – called b() on 10
Line 4 – called a() on 11
Line 2 – return 11 * 2 to previous item in stack

Exercise 1: trianglePerimeter
Exercise 1: write the function trianglePerimeter(x1, y1,
x2, y2, x3, y3) which takes three coordinates – (x1, y1),
(x2, y2), and (x3, y3) – and calculates the perimeter of
the triangle made by connecting those three points.

To make solving this problem easier, you should also
write the function distance(x1, y1, x2, y2) which takes
two coordinates – (x1, y1) and (x2, y2) – and calculates
the distance between them. You should then call
distance() from trianglePerimeter().

Finally, print out the result of calling trianglePerimeter
on the points (0, 50), (20, 30), and (70, 80) to find the
perimeter of that triangle!

(20, 30)

(0, 50)

(70, 80)

Booleans

True-ness and False-ness
So far, we've learned about a few different data types in Python: integers, floats, and strings.

Now we'll learn about another data type that may prove useful: Booleans. A Boolean can be one
of two values, True or False. These can be typed into a Python expression directly, as you'd type
in a variable or a number.

print("Yes", True)

print("No", False)

Comparisons Create Booleans
We normally create Boolean values by comparing expressions in Python. A comparison between two
values will always evaluate to True or False based on whether the comparison is correct as stated.
Here are some standard examples:

print("Less than", 4 < 5) # can also use > for greater than

print("Greater than or equal to", 13 >= (7.2 + 10.3)) # can also use <=

Note that the comparison always takes the format <exp1> <operator> <exp2>.

We can also check whether two expressions are exactly equal, or are not equal:

print("Equal", (20 - 5) == 19) # note we use two equal signs, not one

print("Not equal", 2 != 0) # note that the ! negates the equality check

Comparing Strings
We already know how to compare numbers in real life. Comparing strings is a bit different, but
we can do that too!

print("Equality", "Hello" != "Goodbye")

When we want to see whether one string is less than another, we compare them character-by-
character. Each character is associated with an ASCII value, and we'll compare those integer
values directly. You can get a character's ASCII value by calling ord(char).

print("Comparison", "goodbye" < "hello") # "g" comes before "h",

so "goodbye" comes first

ASCII Table
You don't need to memorize ASCII
values- you can always look them
up in a table.

Note that the digits 0-9, the
letters A-Z, and the letters a-z are
all in order. This means we can
easily compare strings that only
contain characters in one of the
three groups.

For now, we'll mainly just check
equality for strings, not ordering.

Exercise 2: power compare
Exercise 2: at the top level, set up two variables, x and y, that start off holding the values 3 and
5. Then write a line of code that prints out True if xy is greater than yx, or False if not.

Note - your code should still work if the numbers inside x and y are changed.

Combining Booleans
We aren't limited to only evaluating a single Boolean expression! We can combine Boolean
values using logical operations. We'll learn about three- and, or, and not.

Combining Boolean values will let us check complex requirements while running code.

And Operation
The and operation takes two Boolean values
and evaluates to True if both values are True.
In other words, it evaluates to False if either
value is False.

We use and when we want to require that
both conditions be met at the same time.

Example:

(x >= 0) and (x < 10)

and val1 True val1 False

val2 True True False

val2 False False False

Or Operation
The or operation takes two Boolean values and
evaluates to True if either value is True. In
other words, it only evaluates to False if both
values are False.

We use or when there are multiple valid
conditions to choose from

Example:

or val1 True val1 False

val2 True True True

val2 False True False

(day == "Saturday") or (day == "Sunday")

Not Operation
Finally, the not operation takes a single
Boolean value and switches it to the opposite
value (negates it). not True becomes False, and
not False becomes True.

We use not to switch the result of a Boolean
expression. For example, not (x < 5) is the
same as x >= 5.

Example:

not (x == 0)

not val1 True val1 False

result False True

Boolean Order of Operations
Like with math operations, Boolean operations will evaluate in a specific order. not comes first,
then and, then or. However, it can be a pain to keep track of this ordering while coding.

To make code easier to read, always use parentheses to designate which operations you want to
happen first! This is safer than trying to remember how the operations will be ordered.

x = 10

print((x > 5) or ((x**2 > 50) and (x == 20))) # True

print(((x > 5) or (x**2 > 50)) and (x == 20)) # False

Exercise 3: cloneChecker
Exercise 3: write a function, cloneChecker(name, age), that takes a string (a person's name) and
a number (their age). This function returns True if the given name is the same as yours and the
age is within one year of yours, or False otherwise.

Then call the function and print out its output twice- first on an input that makes it return True,
then on an output that makes it return False.

For example, Prof. Kelly is 30 years old, so for her function, "Kelly" and the age 29, 30, or 31
would result in the code returning True. On the other hand, "Kelly" and the number 18 or
"Chloe" and the number 30 would result in the code returning False.

Conditionals

Control Flow
The next few topics we cover will revolve around the idea of control flow, or the order in which
programming commands are run.

So far, all the code we've written is run sequentially. Each line is read and evaluated in order.
Functions changed this slightly, but we can still imagine inserting each function's code into the
place where the function is called to get step-by-step code.

This next unit will help us write code that is only executed in certain circumstances. This lets our
code really react to the input that we provide it!

Conditionals
Sometimes we need to change what a program does based on the given input. We can do this
using conditional statements. These statements choose what the program will do next based on
whether or not a boolean expression is True.

if <boolean_expression>:

<body_if_true>

Note that, as with functions, conditionals use indentation to specify which lines belong to the
conditional, and which lines don't. A conditional must have at least one line in the body, but can
have more than that as well.

Conditional Example
In the following example, the code will only print "I see you!" if the boolean variable visible is
set to True. However, it will always print "start" and "finish".

print("start")

if visible == True:

print("I see you!")

print("finish")

Exercise 4: media test
Exercise 4: at the top level, write a few lines
of code that asks the user what their favorite
[song/movie/book/tv show] is (just pick one,
though!).

If the user's favorite is the same as yours,
print out a special message for them. Then,
whether or not they had the same favorite,
print out a general message about that type
of media.

Feel free to get creative with your messages!
And if you finish with time to spare, try
creating a conversation by adding more
inputs and more responses.

For example, Prof. Kelly's current favorite book is
Skyward. So if the user inputted a different book
(like "The Dark Tower"), her program might print:

"I like reading paper books."

But if the user inputted "Skyward", her program
would print:

"I love that book too! Brandon
Sanderson is fantastic."

"I like reading paper books."

Today's Learning Goals
Understand how scope changes where we can access variables

Use Booleans to compute whether an expression is True or False

Use if statements to make choices about program control flow

