
#8: While Loops and 
Break
SAMS SENIOR NON-CS TRACK



Last Time
Use else and elif statements to make multiple-option decisions

Use nesting to combine if statements with other if statements or functions



Ex 4-2 Feedback
Most of the assignment went well, but many of you didn't get to lineIntersection. Let's go over 
that quickly.



Today's Learning Goals
Use a while loop to repeat actions until a certain condition is met

Use break and nesting to change the control flow of while loops



While Loops



Repeating Actions
Say you want to write a program that prints out the numbers from 1 to 10. Right now, that would look like:

print(1)

print(2)

print(3)

print(4)

print(5)

print(6)

print(7)

print(8)

print(9)

print(10)



Loops
A loop is a control structure that lets us repeat actions, so that we don't need to write out 
similar code over and over again.

Loops are generally most powerful if we can find a pattern between the repeated items. This 
lets us separate out the parts of the action that are the same each time from the parts that are 
different.

In printing the numbers from 1 to 10, the part that is the same is the action of printing. The part 
that is different is the number that is printed.



While Loops
A while loop is a type of loop that keeps repeating until a certain condition is met. It uses the 
syntax:

while <boolean_expression>:

<loop_body>

The while loop checks the Boolean expression, and if it is True, it runs the loop body. Then it 
checks the Boolean expression again, and if it is still True, it runs the loop body again... etc. 
When the loop finds that the Boolean expression is False, it exits the loop immediately.



Loop Variables
Let's say we want to program our print-1-to-10 
example. The part that stays the same (printing) can be 
written directly, but the part that changes (the 
number) will need to be a variable, so we can change it 
as we loop.

To use this loop variable, we'll need to give it an initial 
value, a way to update, and a time to end the loop. 
This last part can also be thought of as when to keep 
looping.

<initial value>

while <when to keep looping>:

print(num) # the print is the same

<way to update>

In our 1-to-10 example, we want to start the variable 
at 1, and end after it has printed 10. So we set num = 1 
at the beginning of the loop and continue looping 
while num <= 10.

Each number we print is one apart from the previous, 
so we'll want to set the variable to the next number 
(num + 1) at each iteration.

num = 1

while num <= 10:

print(num)

num = num + 1



Infinite Loops
Make sure to always update your loop variable in a way that will eventually make the loop condition 
False! Otherwise, you might end up with an infinite loop. 

i = 1

while i > 0:

print(i)

i = i + 1

If you get stuck in an infinite loop, press the button that looks like a lightning bolt above the 
interpreter to make the program stop. Then investigate your program to figure out why the variable 
never makes the condition False. Printing out the loop variable can help with this.



Exercise 1: print evens
Go to the schedule page and download the 
starter file for today's lecture. You'll write 
exercise code under the comment with the 
exercise's number.

Exercise 1: write a few lines of code that print 
the even numbers from 2 to 10, as shown to 
the right. You must use a loop in your solution 
for full credit.

Think about how you can update the variable 
to make this problem easier...

2

4

6

8

10



Loop Conditions and Variables
We can make the condition of the loop any Boolean expression we want. This means that we 
can update variables in many different ways to solve different problems.

For example, what if we wanted to find the largest power of 3 that is less than 100? Start at the 
first power (0), loop while the next number is less than 100 (num*3 < 100), and multiply by 3 
each time!

num = 1

while num * 3 < 100:

num = num * 3

print(num)



Using Multiple Variables
We can also update variables that aren't the loop variable in the loop, in order to generate new kinds of data. As 
long as we check at least one variable in the condition, we can do whatever we want with the rest!

For example, let's write a program that sums the numbers from 1 to 10.

result = 0

num = 1

while num <= 10:

result = result + num

num = num + 1

print(result)



Tracing Loops
Sometimes it gets difficult to track what a 
program is doing when we add in loops. We can 
make this simpler by manually tracing through 
the values in the variables at each step of the 
code, including each iteration of the loop.

result = 0

num = 1

while num <= 10:

result = result + num

num = num + 1

print(result)

step result num

pre-loop 0 1

iteration 1 1 2

iteration 2 3 3

iteration 3 6 4

iteration 4 10 5

iteration 5 15 6

iteration 6 21 7

iteration 7 28 8

iteration 8 36 9

iteration 9 45 10

iteration 10 55 11

post-loop 55 11



Exercise 2: factorial
Exercise 2: write a few lines of code that set a variable num to hold the value 10, then uses a 
loop to compute 10! (or 10 factorial) and print it out at the end. Your code should still work if 
num is changed to hold a different positive integer.

Recall that 10! = 10*9*8*7*6*5*4*3*2*1

Hint: you may need up to three different variables to solve this problem. Think carefully about 
what they should hold!



Loop Control Flow



Input-Output Loops
Sometimes, we want to write a program that will constantly take input from the user and respond 
with meaningful output. When dealing with user interaction, we don't know how many times we 
need to loop- it all depends on what kind of input the user gives!

To do this, we'll tell the loop to keep going forever by making the condition expression True. But we'll 
still need to add something to make the loop stop eventually...

print("Let's introduce everyone in the class!")

while True:

name = input("What's your name?")

print("Hi, " + name + "!")



Break Statements
In order to exit an infinite input-output loop, we'll use a new statement called break. As soon as the program 
reaches a break statement, it will 'break' out of the loop body and immediately move on to the next statement 
after the loop.

We'll usually put break inside an if statement, so that we only break when a certain condition is met. We'll talk 
more about using conditionals in while loops in a bit. For now, you can just plan to use the following structure:

print("Let's introduce everyone in the class!")

while True:

name = input("What's your name?")

if name == "done":

break # we just put break on a line by itself

print("Hi, " + name + "!")

print("Nice to meet everyone!")



Exercise 3: number guessing game
Exercise 3: write a line of code that sets a 
variable num to hold a number between 1 and 
10 that you choose. Then write a few lines of 
code using a loop that asks the user to guess a 
number between 1 and 10. It should continue 
asking them to guess until they get it right. 
When they get it right, print a congratulations 
message.

A possible interaction is shown to the right.

I'm thinking of a number between 1 and 10...

Guess a number: 8

Try again!

Guess a number: 3

Try again!

Guess a number: 4

You got it!



Nesting in Loops
Just as we could nest conditionals in conditionals and conditionals in functions, we can nest 
conditionals in loops!

In general, we use conditionals in loops to change the behavior of different iterations based on the 
loop variable. This can help end the loop early (as with break) or can change the output based on 
properties of the iteration.

while <boolean expression>:

<while body>

if <boolean expression>:

<if body>

<while body>



Example: alternating Boolean
Let's say we want to write a program that 
alternates A and B with the numbers 1 to 10, as 
shown to the right. We can do this by using a 
Boolean to tell whether we should print A or B at 
each iteration of the loop.

aTurn = True
i = 1

while i <= 10:
if aTurn == True:

print("A" + str(i))
else:

print("B" + str(i))

i = i + 1
aTurn = not aTurn

A1

B2

A3

B4

A5

B6

A7

B8

A9

B10



Nesting Example: Variable case
We could also write a program that only performs 
certain statements on a special set of values. This 
code prints out special statements for numbers 
between 3 and 7.

i = 1

while i <= 10:

print(i)

if i == 5:

print("That's five!")

elif 3 <= i and i <= 7:

print("That's close to five")

i = i + 1

1
2
3
That's close to five
4
That's close to five
5
That's five!
6
That's close to five
7
That's close to five
8
9
10



Exercise 4: illusion
Exercise 4: write a few lines of tkinter code 
that create the image shown on the right. 
Note that you'll need to use a loop to get full 
credit.

Hint: it's easiest to make this illusion by 
overlapping shapes. Start with the largest 
black square, then draw the next-largest white 
square, etc. You'll need to draw 10 squares 
total.



Today's Learning Goals
Use a while loop to repeat actions until a certain condition is met

Use break and nesting to change the control flow of while loops


