
CS Scholars - Programming Final Evaluation
Evaluation Period: Thursday 07/27 1:30pm-2:45pm EST

Name:

AndrewID:

This final evaluation will help you evaluate the knowledge you have accumulated over
the course. You should work on this evaluation during the class period on Thursday
07/27 (from 1:30pm - 2:45pm EST) and submit it to Gradescope by 3pm EST on the
same day. It's okay if you can't finish all the problems - just do what you can!

This final evaluation is open-note, but closed to collaboration. You are welcome to
consult the course notes, personal notes, and your past homework assignments during
the evaluation, but you should not communicate with anyone outside of the course staff
during the period of the evaluation. In particular, do not collaborate with other students.

The final evaluation consists of both a written portion and a programming portion. The
written problems should be completed in this starter file; the programming problems
should be completed in the programming starter file.

Written Problems
#1 - Data and Variables
#2 - Conditionals
#3 - Strings and Lists

Programming Problems
#4 - Function Definitions and Calls
#5 - Loops
#6 - Algorithmic Thinking
#7 - User Interaction

Written Problems

#1 - Data and Variables

Consider this block of code:

In the table, list all the variables that are defined in the code and the values they hold
at the end of the code run. You may not need to use all the lines of the table.

Variable Value

#2 - Conditionals
Consider the following code:

Choose specific values for x and y that would lead to the code printing each of the given
results. Fill out your answers in the table below. If one of the variables could be
assigned to any value to achieve the given result, write the word anything instead of a
value. If there is no possible combination of values that would lead to the given result,
write the word nothing instead of a value.

Note: the last row should be taken literally; which values would lead to nothing being
printed?

x value y value

prints A

prints B

prints C

prints D

prints E

Nothing is printed

#3 - Strings and Lists
Consider the following list:

lst = ["you", "can", "code", "if", "you", "practice", "each", "day"]

Write a snippet of code that accesses the value "code" from the list.

Write a snippet of code that accesses the last three values from the list, all together as
one sublist. Use slicing to do this.

Write a snippet of code that uses a method to find the number of times the value "you"

occurs in the list. Store the answer in a variable called result. (You should not use a
loop!)

Write a snippet of code that uses a loop to find the number of times the value "you"

occurs in the list. Store the answer in a variable called result. (You should not use any
methods!)

Programming Problems

#4 - Function Definitions and Calls
Write the function divideCost(totalCost, tipPercent, numPeople). This function
takes three parameters: the total cost of a meal (a float), the percent you want to tip (a
float), and the number of people who are splitting the bill (an integer). It calculates the
total post-tip, divides that total between the given number of people, and returns a float:
the amount each person owes, rounded to two significant digits.

For example, divideCost(46.7, 0.18, 3) would calculate the post-tip cost as 46.7
+ 46.7 * 0.18 = 55.106. Dividing that across three people would yield a per-person
cost of 18.3686666667. Rounded to two digits, that would be 18.37, which is returned.

Note: for this problem you need to write the function header yourself. You should put it
under the comment ''' #4 - Function Definitions and Calls ''' in the starter
file.

#5 - Loops
Write a function makeNumberString(num) which takes an integer, num, and returns a
string that follows a certain pattern up to the number num.

The pattern starts with a single 1, then two 2s, then a dash. Then there are three 3s,
then four 4s, then another dash. This continues until the number num is reached; then
the pattern ends.

For example, if we called makeNumberString(7), the function would return:

"122-3334444-55555666666-7777777"

On the other hand, if we called makeNumberString(4) the function would return
"122-3334444-".

Hint: start by just generating the string of numbers. Once that's working, try to add in
the dashes at the proper places. Pay close attention to the properties of the numbers
the dashes come after…

#6 - Algorithmic Thinking

Your task is to translate an algorithm for the function possibleWords(letters,

wordList) which takes letters, a list of single-character strings, and wordList, a list
of words (strings), and returns a new list containing only the words from wordList that
can be written using only the letters that occur in letters.

For example, given the list of letters ["a", "c", "d", "e", "f", "o"] and the word
list ["code", "dart", "face", "feed"], the function would return ["code",

"face"]. Note that "dart" cannot be written because the letters list does not contain
the letter "t", and "feed" cannot be written because the letters list only contains one
"e".

You do not need to write an algorithm for this problem from scratch - we're providing
one for you! You just need to translate this algorithm from plain language into Python
code. Here is the algorithm:

1. Create a empty list that will hold the chosen words
2. Loop over each of the words in the word list

a. Create a copy of the word in a new variable
b. Loop over each of the letters in the letters list

i. If the letter is in the copied-word
1. Find the index where the letter occurs in the copied-word
2. Update the copied-word variable so that it no longer contains

the letter at that index.
c. If the copied-word is an empty string

i. Add the original word to the chosen words list
3. Return the chosen words list

Hint: when updating the copied-word variable to remove a letter, use string slicing to
create a new version containing the letters up to that index, then the letters after that
index.

#7 - User Interaction
Using our interaction framework, write an interactive program where the user can
manipulate the size, position, and color of a rectangle using their mouse and keyboard.
Specifically, the user should be able to do the following:

● The rectangle grows and shrinks vertically in response to key presses: If
the user presses the up key, the rectangle should grow in height by 10 pixels (the
top should move 5 pixels further up, and the bottom move 5 pixels further down).
Likewise, if the user presses the down key, the rectangle should shrink in size by
10 pixels (the top moves 5 pixels down and the bottom moves 5 pixels up). The
user should not be able to shrink the rectangle below 10 pixels in size.

● The rectangle moves horizontally in response to mouse clicks: If the user
clicks to the left or right of the rectangle, outside of the bounds of the rectangle,
the rectangle moves so that it is horizontally centered in the clicked location.
However, the vertical center should remain the same; the rectangle only moves
horizontally, not vertically.

● The rectangle changes color in response to key presses: if the user presses
the 'r' key, the color changes to red; when the user presses 'g', it becomes green;
when the user presses 'b', it becomes blue.

● The rectangle changes color in response to mouse clicks: if the user clicks
inside the rectangle (inside both vertical and horizontal bounds), the rectangle
color changes to a randomly-chosen color (orange, yellow, or purple).

Outside of these constraints, you can design the program however you'd like.

	VariableRow1:
	ValueRow1:
	VariableRow2:
	ValueRow2:
	VariableRow3:
	ValueRow3:
	VariableRow4:
	ValueRow4:
	VariableRow5:
	ValueRow5:
	VariableRow6:
	ValueRow6:
	VariableRow7:
	ValueRow7:
	VariableRow8:
	ValueRow8:
	x valueprints A:
	y valueprints A:
	x valueprints B:
	y valueprints B:
	x valueprints C:
	y valueprints C:
	x valueprints D:
	y valueprints D:
	x valueprints E:
	y valueprints E:
	x valueNothing is printed:
	y valueNothing is printed:
	Write a snippet of code that accesses the value code from the list:
	one sublist Use slicing to do this:
	loop:
	methods:
	Text1:
	Text2:

