CS Scholars - Programming Hw2 - Written
Due Date: Friday 07/14 EOD

Name:

AndrewlD:

For full credit on the assignment, complete either all Review + Core problems (#1-#10)
or all Core + Spicy problems (#1-#5, #8-#12).

Bonus problems are related to the Advanced Track content, and are optional.

Core Problems - Written
#1 - Code Tracing Conditionals

#2 - Python Error Identification

#3 - Writing Test Cases
#4 - Loop Control Variables

#5 - For Loops
Review Problems - Programming

#6 - Flow Chart to Program

#7 - printSquare
Core Problems - Programming

#8 - Interactive Program
#9 - drawlllusion

#10 - printPrimeFactors

Spicy Problems - Programming
#11 - isHappyNumber

#12 - printDiamond
Bonus Problems

Advanced Programming 1 - Recursion

Advanced Programming 2 - Recursion
Advanced Computer Science - Concurrency

Core Problems - Written

#1 - Code Tracing Conditionals

Can attempt after Booleans and Conditionals lecture

Given the following block of code, choose specific values for x, y, and z that would lead
to the code printing A, B, C, D, or E. If one of the variables could be assigned to any
value to achieve the result, write the word anything instead of a value. Fill out your
answers in the table below.

if x < 10:
if y > 20:
if z == "foo":
print("A")
else:
ifyx2==0:
print("B")
else:
print("C")
elif x < 100:
if y < 0@ and z == "bar":
print("D")
elif y < o:
print("E")

Printed Result x value y value z value

m|o(o|lm|>

#2 - Python Error Identification
Can attempt after Errors, Debugging, and Testing lecture
For each of the following lines of code, select whether it causes a Syntax Error,

Runtime Error, or No Error. You are guaranteed that no code has a logical error and
that no variables are defined before the code runs.

print("Hello World"

[1 Syntax Error
[] Runtime Error
[] No Error

print(Test)

[1 Syntax Error
[] Runtime Error
[] No Error

print("2+2=" + 4)

[1 Syntax Error
[Runtime Error
[] No Error

X -y=25

[1 Syntax Error
[Runtime Error
[No Error

X=1==2

[] Syntax Error
[] Runtime Error
[] No Error

#3 - Writing Test Cases

Can attempt after Errors, Debugging, and Testing lecture

Assume we have written a program isPositiveEvenInt(value), which returns True if
the given value is a positive and even and an integer, and False otherwise.

Write a set of test case assertions for this function that fulfill the five test case types we
discussed in lecture. Your test cases should be runnable in Python (use assert
statements!).

#4 - Loop Control Variables

Can attempt after While Loops lecture

Each of the following problem prompts could be implemented using a loop. Identify the
start value, continuing condition, and update action for the loop control variable you
would use in that loop. Assume that the loop control variable will be outputted at the
beginning of the loop, and no conditional will be used. We've given an example of what
this looks like in the first line

Ex) Output the numbers from 1 to 10, inclusive.

A) Output all even numbers between 2 and 20, including 2 but not including 20.
B) Output the numbers from 10 to 1, inclusive on both.

C) Output the numbers 3, 9, 15, 21.

Prompt Start Value Continuing Condition Update Action
Ex 1 x <=10 X=x+1
A

#5 - For Loops

Can attempt after For Loops lecture

Given the following block of code, fill out a variable table that shows the values of the
variables at the end of each iteration of the loop. Don't just copy the code into the
editor; trace it yourself! You may not need to fill out values for every listed iteration.

X

y
for

(%)
(%]

z in range(3, 15, 2):

X = X + Z
if x ¥ 2 ==

y =y +1
print(x, vy, z)

X value

y value

z value

Pre-loop 0

Iter 1

Iter 2

Iter 3

Iter 4

Iter 5

Iter 6

Iter 7

Iter 8

Programming Problems

Each of these problems should be solved in the starter file available on the course
website. They should be submitted to the Gradescope assignment Hw2 - Programming
to be autograded. Make sure to check the autograder feedback after you submit!

For each of these problems (unless otherwise specified), write the needed code directly
in the Python file in the function definition associated with the problem.

To test your code before submitting, 'Run file as script' and make sure all the test
functions pass.

Review Problems - Programming
#6 - Flow Chart to Program
Can attempt after While Loops lecture

Given the control flow chart below, write a function mysteryFunction(a, b, c) that
implements the control flow chart correctly. You should use a while loop.

param a, b, c

return d

#7 - printSquare

Can attempt after Loops lecture

Write a function printSquare(n) which prints an ascii art square out of asterisks based
on the integer n. For example, printSquare(5) would print the following:

)k Kk k
)k KKk
)k Kk %k
%k %k %k 3k k
%k %k %k 3k k

Note that the square is five lines long, with each line having five asterisks. As another
example, printSquare(8) would look like:

*ok kK KKk ok
* ok kK KKk ok
* ok kK K Kk ok
* % % K ok ok ok K
*ok ok K ok Kok ok
* ok kK KKk ok
* ok kK KKk ok
* ok K K ok ok ok ok

You'll want to create a loop where each iteration prints a single line of the square. To
draw multiple asterisks on a single line, consider using the * operator, which can be
used to repeat a string an integer number of times.

Note: n is guaranteed to be positive.

Core Problems - Programming

#8 - Interactive Program

Can attempt after Conditionals lecture

In the function interactiveProgram, use the input function and conditionals to set up
a short interactive program of your own design. This could be a very short
choose-your-own-adventure story, or a Buzzfeed-style quiz, or whatever else you'd like!
The only requirements are:

1.

You must use the input function to collect information from the user at least
three times.

The interactiveProgram function must take no parameters

You must use conditionals somewhere in your code. There should be at least
two if statements and at least one elif or else statement.

. All the code for your interactive program must be in the interactiveProgram

function (or helper functions that interactiveProgranm calls).

#9 - drawIllusion

Can attempt after While Loops lecture
Write the function drawIllusion(canvas) which takes a Tkinter canvas and draws the

illusion shown below. You must use a while loop to do this; don't hardcode a large
number of rectangles.

Hint: it's easiest to make this illusion by drawing overlapping squares. Start with the
largest black square, then draw the next-largest white square, etc. You'll need to draw
10 squares total. The canvas is 400px wide, so each square should be 20 pixels smaller
on each side than the previous one (with the last square being exactly 40 pixels wide).

Another Hint: start by considering what the loop control variable should be. Which
values need to change as you move to the next square? How do those values relate to
the loop control variable?

#10 - printPrimeFactors

Can attempt after For Loops lecture

Write the function printPrimeFactors(x) which takes a positive integer x and prints
all of its prime factors in a nice format.

A prime factor is a number that is both prime and evenly divides the original number
(with no remainder). So the prime factors of 70 are 2, 5, and 7, because 2 *5* 7 = 70.
Note that 10 is not a prime factor because it is not prime, and 3 is not a prime factor
because it is not a factor of 70.

Prime factors can be repeated when the same factor divides the original number
multiple times; for example, the prime factors of 12 are 2, 2, and 3, because 2 and 3 are
both prime and 2 * 2 * 3 = 12. The prime factors of 16 are 2, 2, 2, and 2, because 2 * 2 *
2 * 2 =16. We'll display repeated factors on a single line as a power expression; for
example, 16 would display 2 ** 4, because 2 is repeated four times.

Here's a high-level algorithm to solve this problem. To find factors manually, iterate
through all possible factors. When you find a viable factor, repeatedly divide the
number by that factor until it no longer evenly divides the number. Our algorithm looks
something like this:

1. Repeat the following procedure over all possible factors (2 to x)
a. If x is evenly divisible by the possible factor
i. SetanumbercounttobeO
i. Repeat the following procedure until x is not divisible by the
possible factor

1. Set count to be count plus 1
2. Set x to x divided by the factor

iii. Ifthe number count is exactly 1
1. Print the factor by itself

iv. If the number count is greater than 1
1. Print "f ** ¢", where f is the factor and c is the count

As an example, if you call printPrimeFactors(600), it should print
2**3

3
5** 2

Spicy Problems - Programming

#11 - isHappyNumber

Can attempt after While Loops lecture

Write the function isHappyNumber (n) which takes a positive integer n and returns True
if n is a happy number and False otherwise. We say a number is happy if repeatedly
replacing the number with the sum of the squares of its digits eventually leads to the
number 1 (which is a steady state, as 12 == 1).

For example, given the number 49, replacing the number with the sum of the squares of
its digits gives us the sequence:

49 ->42+92=97->92+72=130->12+32+0?=10->12+ 02 =1
Therefore, 49 is a happy number.

How can we tell if a number is not happy? Any unhappy number will eventually end up
in a cycle that includes the number 4:

4->42=16=12+62=37->32+72=58->52+82=89->82+92=145->12+ 42+ 5?
=42->42+22=20->22+0%=4-> ...

So if the sum of the squares of the digits ever becomes 4, you know that the number is
not happy.

Hint: the loop control variable for this problem is tricky. Try to replicate the repeated
process shown above.

Another hint: you will need two while loops to solve this problem, not one!

#12 - printDiamond
Can attempt after For Loops lecture

Write a function printDiamond(n) which prints ascii art of a diamond with a size based
on the positive integer n. For example, printDiamond(4) would print:

11
2%%2
3k * k3
PEEEEEIEY]
3k * k3

2%*2
11

Whereas printDiamond(3) would print:

11
2%%2
Jkkkk3
2%*2
11

You'll want to create a loop where each iteration prints a single line of the ascii art. To
draw multiple spaces and multiple asterisks on a single line, consider using the *
operator, which can be used to repeat a string an integer number of times.

Hint 1: Every line is composed of three parts: outer spaces, inner asterisks, and two
numbers on the outside of the diamond. For example, the second line of the size=3
diamond has one space, then the number 2, then two asterisks, then the number 2
again. Consider each of these parts individually, note how they change between
iterations, then determine how to map the loop control variable to each part separately.

Bonus Problems

Advanced Programming 1 - Recursion

Assume you want to write a function recursiveSum that takes a positive integer, n, and
recursively computes the sum from one to n.

For example, the result when calling the function on n=5 is 5+4+3+2+1 = 15.

What condition do you need to check for your base case, and what do you return?

What is the recursive call on a smaller problem in the recursive case, and how do you
use that result to solve the whole problem for n?

Advanced Programming 2 - Recursion

In the programming starter file, write the function powerSum(n, k) that takes two
non-negative integers n and k and returns the so-called power sum: 1 + 2 + ... +
n*. You must use recursion to solve this problem: for loops, while loops, and the
function sum are not allowed.

Note that the test function for powerSum is commented out; you'll need to uncomment it
to test your function.

Advanced Computer Science - Concurrency

You are managing a volunteer organization that makes peanut butter and jelly
sandwiches. The steps to make a PB&J sandwich are:

1. [P] Spread peanut butter on one slice of bread (30 seconds)
2. [J] Spread jelly on top of the peanut butter (30 seconds)
3. [S] Complete the sandwich by putting a slice of bread on top (15 seconds)

Originally each worker makes one sandwich at a time, with all three workers working in
parallel. Each of the cells in the following table represents 15 seconds, with the whole
table representing three minutes of work. Fill in the cells with the letters representing the
steps to demonstrate the original system the volunteers used.

Logistical note: If a step spreads across multiple cells, designate this with a dash (-) in
the cell(s) following the first one. If no work occurs in a cell, leave it blank.

Worker | 00:00 | 00:15 | 00:30 | 00:45 [01:00 | 01:15 | 01:30 | 01:45 | 02:00 | 02:15 | 02:30 | 02:45

A

B

C

How many complete sandwiches could be made by
three workers in three minutes with the original system?

Recent changes have affected the ingredients you have to work with; now you just have
one giant tub of peanut butter and one giant tub of jelly. You decide to reorganize the
workers to accommodate the changes while still being efficient. Create a new schedule
that uses pipelining to make sandwiches instead.

Worker | 00:00 | 00:15 | 00:30 | 00:45 [01:00 | 01:15 | 01:30 | 01:45 | 02:00 | 02:15 | 02:30 | 02:45

A

B

Cc

How many complete sandwiches could be made by
three workers in three minutes with the new pipeline?

	x valueA:
	y valueA:
	z valueA:
	x valueB:
	y valueB:
	z valueB:
	x valueC:
	y valueC:
	z valueC:
	x valueD:
	y valueD:
	z valueD:
	x valueE:
	y valueE:
	z valueE:
	Syntax Error: Off
	Runtime Error: Off
	No Error: Off
	Syntax Error_2: Off
	Runtime Error_2: Off
	No Error_2: Off
	Syntax Error_3: Off
	Runtime Error_3: Off
	No Error_3: Off
	Syntax Error_4: Off
	Runtime Error_4: Off
	No Error_4: Off
	Syntax Error_5: Off
	Runtime Error_5: Off
	No Error_5: Off
	statements:
	1A:
	x 10A:
	x x 1A:
	1B:
	x 10B:
	x x 1B:
	1C:
	x 10C:
	x x 1C:
	0Iter 1:
	0Iter 1_2:
	Iter 1:
	0Iter 2:
	0Iter 2_2:
	Iter 2:
	0Iter 3:
	0Iter 3_2:
	Iter 3:
	0Iter 4:
	0Iter 4_2:
	Iter 4:
	0Iter 5:
	0Iter 5_2:
	Iter 5:
	0Iter 6:
	0Iter 6_2:
	Iter 6:
	0Iter 7:
	0Iter 7_2:
	Iter 7:
	0Iter 8:
	0Iter 8_2:
	Iter 8:
	What condition do you need to check for your base case and what do you return:
	use that result to solve the whole problem for n:
	0000A:
	0015A:
	0030A:
	0045A:
	0100A:
	0115A:
	0130A:
	0145A:
	0200A:
	0215A:
	0230A:
	0245A:
	0000B:
	0015B:
	0030B:
	0045B:
	0100B:
	0115B:
	0130B:
	0145B:
	0200B:
	0215B:
	0230B:
	0245B:
	0000C:
	0015C:
	0030C:
	0045C:
	0100C:
	0115C:
	0130C:
	0145C:
	0200C:
	0215C:
	0230C:
	0245C:
	How many complete sandwiches could be made by three workers in three minutes with the original system:
	0000A_2:
	0015A_2:
	0030A_2:
	0045A_2:
	0100A_2:
	0115A_2:
	0130A_2:
	0145A_2:
	0200A_2:
	0215A_2:
	0230A_2:
	0245A_2:
	0000B_2:
	0015B_2:
	0030B_2:
	0045B_2:
	0100B_2:
	0115B_2:
	0130B_2:
	0145B_2:
	0200B_2:
	0215B_2:
	0230B_2:
	0245B_2:
	0000C_2:
	0015C_2:
	0030C_2:
	0045C_2:
	0100C_2:
	0115C_2:
	0130C_2:
	0145C_2:
	0200C_2:
	0215C_2:
	0230C_2:
	0245C_2:
	How many complete sandwiches could be made by three workers in three minutes with the new pipeline:
	Text1:
	Text2:

