
#1-1: Introductions &
Algorithms
CS SCHOLARS – PROGRAMMING

1

Learning Objectives
Understand the resources and expectations associated with the course

Define the essential components of computer science, algorithms and
abstraction

Construct plain-language algorithms to solve basic tasks

2

Course Goals
The goal of this course is to develop a solid understanding of computer
programming.

This involves both understanding program syntax and understanding the
soft skills of programming.

By the end of this course, you should be able to:
▪Understand and use the core components of programming
▪Build small interactive programs that react to user input

3

Programming and the World
Programs have a huge influence on the world around us! You can take programming as a tool
and apply it to basically any domain.

Some program applications are obvious:
◦ applications on your computer
◦ smartphone apps
◦ social media
◦ video games

Others are more subtle:
◦ analysis of sports performance to help players improve
◦ rendering of realistic animation for movies, games, and more
◦ reducing waste by redirecting supplies where they're needed
◦ simulation of climate change to study where changes can be made

4

Course Intro

5

Activity: Introductions
Instructor: Prof. Kelly Rivers

TAs: Emily Getty and Dian Zhu

Activity: introduce yourself!

6

Primary Resources
Course Website: http://www.krivers.net/css-m23/
◦ Schedule, syllabus, course materials

Gradescope: https://www.gradescope.com/courses/544050
◦ Assignment submission, feedback

Slack:
◦ Logistics, fast questions, requests for one-on-one meetings

7

http://www.krivers.net/css-m23/
https://www.gradescope.com/courses/544050

Course Plan
Core Track:
◦ Essential elements of programming from basics to interactive programs

◦ A new topic every day!

◦ One homework assignment a week

Advanced Track:
◦ Advanced concepts in programming and computer science

◦ Two new topics a week (both released Monday)

◦ Optional bonus problems on main assignment

8

Core Track
Week 1: Building Blocks – Algorithms, programming basics, and functions

Week 2: Control Flow – Conditionals, testing, loops, and algorithmic
thinking

Week 3: Interaction – Strings, lists, and user interaction

Week 4: Scaling Up – Top-down design, libraries, and a class-chosen topic

9

Advanced Track
Week 1: External Libraries & Data Representation

Week 2: Recursion & Concurrency

Week 3: Data Structures & Efficiency Analysis

Self-taught from slides, but you're welcome to ask questions during work
period or on slack.

Make sure you've mastered the core track and finished the core
homework before tackling these!

10

Homework Logistics
Download starter files from course website
◦ Written portion as fillable PDF, programming portion as .py file

Work on assignments during work periods (usually afternoon sessions) or in the evening
◦ Collaboration is encouraged, but make sure to write up your own answers – don't copy!

Split into four parts: Review, Core, Spicy, and Bonus
◦ Review – ensure you're solid on the fundamentals, get extra practice with the ideas
◦ Core – primary assessment of the material
◦ Spicy – a little extra challenge, usually in the form of harder problem-solving
◦ Bonus – practice the advanced material

To fully complete an assignment, complete either Review + Core or Core + Spicy

11

Homework Submission
Upload your .pdf and .py files to Gradescope on the relevant assignments.

.py files are (mostly) autograded; wait on the page for a few seconds to see your results.

.pdf files are manually graded sometime in the following week.

You can resubmit as many times as you like.

Regular deadline: usually Friday end-of-day.

Revision deadline: usually following Wednesday end-of-day.

We'll demo how to submit on Friday and how to view feedback next Monday.

12

Homework Grading
We're going to use mastery grading. Each problem will be graded as:

◦ Mastered – you fully understand the concept. Scored as 1/1.

◦ Sufficient – you understand the concept well enough to move forward,
though you may still make occasional mistakes. Scored as 0.5/1.

◦ Insufficient – you need to keep working on the concept. Scored as 0/1.

You should aim to master or show sufficient knowledge on every problem
you attempt.

13

End-of-Program Evaluation
At the end of the program, you'll receive a personal evaluation.

You will be evaluated primarily based on participation (engagement and
interaction during lecture periods) and homework performance
(successful completion of the homework assignments).

You'll also be evaluated based on your performance on a final evaluation.
This will take place on the last day of class and will cover the core
material.

14

Activity: Set Up the IDE
Thonny: https://thonny.org/ (or another IDE of your choice)

Activity: Go ahead and download it now!

Note: if you're using a Chromebook, you probably won't be able to
download applications. Create an account on https://replit.com/ instead.
◦ repl.it is free, but your code will be publicly viewable. To keep your code

private, set up a GitHub student account with your andrewID or high school
email (https://education.github.com/pack#offers), then connect it to your
repl.it account.

15

https://thonny.org/
https://replit.com/
https://education.github.com/pack#offers

Algorithms

16

What is Computer Science?
Computer science is the study of computation, and computational devices. This
can be studied through many different lenses, including:

◦ Computational theory – what are the possibilities and limitations of computation?
◦ Computational application – how can we use computation to fulfill a specific need?
◦ Computational discovery – given data, can we find patterns and answer questions

through computation?
◦ Computational expression – how can computation change the way we communicate

and engage with others?
◦ Critical computing – how does computation affect our lives, and how should it be

regulated?

What do we mean by 'computation'? We can reduce this to two core themes:
algorithms and abstraction.

17Read more: https://cacm.acm.org/blogs/blog-cacm/249787-what-liberal-arts-and-sciences-students-need-to-know-about-computing/fulltext

https://cacm.acm.org/blogs/blog-cacm/249787-what-liberal-arts-and-sciences-students-need-to-know-about-computing/fulltext

Algorithms and Abstraction
Algorithms are procedures that specify how to
do a needed task or solve a problem. They are
used to standardize processes and
communicate them between different people.

Algorithms can be incredibly powerful, but
they're still designed by humans, which means
they're vulnerable to human flaws.

Algorithms are like recipes, tax codes, and
sewing patterns. When you give someone
directions to a location, you're communicating
an algorithm.

Abstraction is a technique used to make
complex systems manageable by changing the
amount of detail used to represent or interact
with the system.

This can be done by identifying the most
important features of a system and generalizing
away unessential features.

Abstraction shows up in many interactions – for
example, you can pay for groceries through
many modalities (cash, debit, credit, an app),
and each is implemented slightly differently,
but all are just different representations of
money.

18

Activity: Make a PB & J Algorithm
You do: work with a group to write a list of
instructions (an algorithm) on how to make
a peanut butter and jelly sandwich.

Before you begin, consider what level of
abstraction to use. Assume the user knows
the ingredients and how to do basic actions
but has no cooking experience.

We'll test your instructions afterwards...

19

An Algorithm with Moderate Abstraction
1. Before starting: make sure you have a bag of bread, a jar

of peanut butter, a jar of jelly, a plate, and a knife

2. Open bag of bread

3. Reach hand in and take out 2 slices of bread

4. Place each slice on a plate

5. Open jar of peanut butter

6. Pick up knife and stick sharp side of knife into open jar

7. Use knife to scoop out peanut butter

8. Wipe and spread peanut butter on one slice of bread

9. Repeat 5, 6, 7 until slice of bread is covered in peanut butter.
Then close jar

10. Open jar of jelly

11. Pick up knife and stick sharp side of knife into open jar

12. Use knife to scoop out jelly

13. Wipe and spread jelly on non-PB slice of bread

14. Repeat 10, 11, 12 until the slice of bread is covered in jelly.
Then close jar.

15. Put the peanut butter side of one slice of bread on the jelly
side of the other.

16. Result: you now have a peanut butter and jelly sandwich on a
plate

20

We assume that the user can identify the ingredients and tools,
and knows basic actions, but does not know complex actions.

An Algorithm with Heavy Abstraction
1. Before starting: make sure you have bread, peanut butter, and jelly

2. Get two slices of bread

3. Spread peanut butter on one slice

4. Spread jelly on the other slice

5. Combine slices into a sandwich

6. Result: you now have a peanut butter and jelly sandwich

21

If we've already taught
someone the basics of
sandwich-making, teaching
them to make a PB & J
sandwich is a lot simpler!

Note that we don't define
how to spread the peanut
butter or jelly. Maybe the
user will have a different
approach to ours.

An Algorithm with Low Abstraction
1. Before starting: make sure you have [specific quantity and type of bread in plastic bag with tab], hand,

plate...

2. Define bread as a grain-based substance that has been divided into 1 inch wide parts (slices). Bread is in a
plastic container (bag)

3. Open bread bag by gently pulling a plastic tab away from the plastic wrap.

4. Define hand as the appendage at the end of your arm. Define fingers as the smaller appendages at the end
of your hand

5. Define plate as a hard, flat, usually-circular surface

6. Move hand into the opening in the bread bad. Move fingers to close position around the top bread slice

7. Lift hand until it is outside of bread bag.

8. Move hand over the plate, then down so that it is touching plate. Open fingers around the bread slice.

9. Repeat steps 5-7 so that a second bread slice is on the plate.

10. ...

22

If someone doesn't even know the basic assumptions (a toddler, or
a robot), we'll need to define every item used and how to execute
even the simplest steps. And we're still making assumptions here!

Designing Good Algorithms
Designing algorithms at the right level of abstraction is a large part of
computer science. When we represent an algorithm as program code, we
communicate with a computer to tell it how to do a specific task.

What are the core parts of an algorithm?

◦ It should specify what is needed at the beginning (input)

◦ It should specify what is produced at the end (output)

◦ It should specify how to get from the beginning to the end (steps)

23

Algorithms can be Measured Many Ways
It's not always good enough to make an algorithm that works. There are
many ways to solve any given problem, and these different approaches
can be compared to determine which is 'best'.

Here are some metrics we might use to assess an algorithm:
◦ It should produce the right output for all given inputs (correctness)
◦ It shouldn't take too long to finish (efficiency)
◦ Others should be able to understand and modify it as needed (clarity)
◦ It shouldn't be broken by unexpected behavior (robustness)
◦ And more!

24

[if time] Activity: Ideate on Course Goals
You do: what are your goals for this course? What do you want to be able to do
four weeks from now?

◦ Take three minutes to reflect on your goals. Feel free to write or type up your
thoughts.

◦ Then we'll move into small groups where you can discuss your ideas.
◦ In the last five minutes of class, fill out your thoughts here: http://bit.ly/css23-goals

There are no right or wrong answers – I just want to know what all of you are
interested in.

25

http://bit.ly/css23-goals

Learning Objectives
Understand the resources and expectations associated with the course

Define the essential components of computer science, algorithms and
abstraction

Construct plain-language algorithms to solve basic tasks

26

	Slide 1: #1-1: Introductions & Algorithms
	Slide 2: Learning Objectives
	Slide 3: Course Goals
	Slide 4: Programming and the World
	Slide 5: Course Intro
	Slide 6: Activity: Introductions
	Slide 7: Primary Resources
	Slide 8: Course Plan
	Slide 9: Core Track
	Slide 10: Advanced Track
	Slide 11: Homework Logistics
	Slide 12: Homework Submission
	Slide 13: Homework Grading
	Slide 14: End-of-Program Evaluation
	Slide 15: Activity: Set Up the IDE
	Slide 16: Algorithms
	Slide 17: What is Computer Science?
	Slide 18: Algorithms and Abstraction
	Slide 19: Activity: Make a PB & J Algorithm
	Slide 20: An Algorithm with Moderate Abstraction
	Slide 21: An Algorithm with Heavy Abstraction
	Slide 22: An Algorithm with Low Abstraction
	Slide 23: Designing Good Algorithms
	Slide 24: Algorithms can be Measured Many Ways
	Slide 25: [if time] Activity: Ideate on Course Goals
	Slide 26: Learning Objectives

