
#1-2: Programming
Basics
CS SCHOLARS – PROGRAMMING

Learning Objectives

Recognize and use the basic data types in programs

Interpret and react to basic error messages caused by programs

Use variables in code and trace the different values they hold

2

Python and IDEs

3

Programs are Algorithms for Computers

Computers only know how to do what we tell them to do. Programs
communicate with a computer and tell it what to do.

Algorithms can be expressed as programs in many different programming
languages. Different languages use different syntax (wording) and
commands, but they all share the same set of algorithmic concepts.

In this class, we'll use Python, a popular programming language.

4

Python is Simple and Highly Useful

The Python programming language is designed to be easy to read and
simple to implement algorithms in.

There are also a huge number of libraries that implement useful things in
Python. We'll use libraries that support graphics, data analysis,
randomness, and more.

Python's main weakness is efficiency − it can be slower than other
languages. But that won't matter for our purposes.

5

An IDE is a Text Editor for Programs

When writing programs, we use an IDE – Integrated Development
Environment. This is like a text editor for programs.

In this class, we recommend that you use the Thonny IDE, because it is
specially designed for novices! But you can also use repl.it, an online IDE
that also supports Python

We will mostly use two parts of the IDE while writing code: the editor
and the interpreter.

6

Write in the Editor, Run in the Interpreter

The editor is just a normal text editor.
When we save text, it is saved to a .py
file, but this is still just normal text.

The interpreter (or shell) does the actual
work of converting our Python text into
instructions the computer can run. This
happens when you click Run Current
Script from the Run menu.

We can also run single lines of code in the
interpreter directly. We'll start by doing
that. In general, use the interpreter to run
short tasks and the editor for long tasks.

7

editor

interpreter

repl.it Editor and Interpreter

In repl.it, the
editor and the
interpreter look
like this.

8

editor interpreter

Sidebar: How Files Work

Your computer uses file and folders to organize data content locally (on
the hardware). You can view your files and folders with Finder (Mac) or
File Explorer (Windows).

A file is a single piece of content – a document, or a picture, or a song, or
Python code.

A folder is a structure that holds files and/or other folders. Folders can be
nested for further organization. Folders let you manage files directly.

9

Data Types

10

Data Is Information We Can Manipulate

Most programs we write will keep track of some kind of information and
change it with actions. We call that information data.

Data have different types depending on their properties. We'll start by
going over three core types: numbers, text, and truth values.

Data can also be combined using operations. We'll show some basic
operations for each data type.

11

Numbers in Python

Numbers can be represented by two types in Python:
Integers (0, 14, -7) are whole numbers.
Floating point numbers (3.0, 5.735, 8e10) include a decimal point.

Numbers can also be combined using math operators:
+ : addition
- : subtraction
* : multiplication
/ : division
** : power (2**3 = 8)

Python can combine multiple operations together as a whole and follows order of operations.
Use parentheses () to specify the order as needed.

An expression like 4**2 or (5-2)/3 is a piece of code that evaluates to a data value. You tell
the interpreter to evaluate a piece of code by pressing Enter.

12

Two New Math Operators
Python also supports two other math operators you might not be as used to.

Modulo, or mod (%) finds the remainder when one number is divided by another.

 For example, 7 % 4 is equal to 3

 You can get the tens digit of a number with 1234 % 10

Floor division, or div (//) divides numbers by rounding down to nearest whole
number. This effectively cuts off any digits after the decimal point.
 For example, 7 // 4 is equal to 1, not 1.75

 Cut off the last digit of a number with 1234 // 10

13

Text in Python

Text values in Python are called strings. Text is recognized by Python
when it is put inside of quotes, either single quotes ('Hello') or double
quotes ("Hello").

Strings can be concatenated together using addition.

E.g, "Hello" + "World" produces "HelloWorld".

Strings can also be repeated using multiplication with an integer!

E.g, "Hello" * 3 produces "HelloHelloHello"

14

Truth Values in Python

Finally, Python can evaluate whether certain expressions are true or false. These
types of values are called Booleans after the mathematician George Boole.

Booleans can be either True or False (no quotes, and capitals are required).
These names are built into Python directly.

To get a Boolean, we can write True or False directly, or do a comparison. The
basic comparison operators are familiar: <, >, <=, and >=.

We can also check if two values are equal (==), or not equal (!=).

E.g., "Hello" == "World" evaluates to False

15

Type Mismatches Cause Errors

Be careful when mixing types in Python, as that can cause error messages. An error message is
how the computer tells you it doesn't understand a command you wrote.

For example, "Hello" + 5 results in a TypeError.

Similarly, "Hello" < True results in a TypeError.

Note that integers and floating point numbers can be mixed. When this happens, the result is
usually a floating point number.

For example, 8 * 2.0 results in 16.0

16

Data Type Names
When reading error messages, note that Python uses shortened names for
the four types we've covered.

Integers are called int

Floating point numbers are called float

Strings are called str

Booleans are called bool

17

Activity: Predict the Type

Let's do a Kahoot to see if you can identify data types correctly!

Join by going to kahoot.it, then enter the game's pin.

18

https://kahoot.it/

Writing Code in Files

19

Writing Longer Programs: Use the Editor

What if we want to run more than one line of code at a time?
We'll need to use the editor.

Write lines of code in the editor, save the file, then click Run
current script on Thonny (or just Run on repl.it).

Your IDE will interpret the entire text file into executable
Python code the computer will understand. It will then run
line-by-line through the entire program sequentially, where
each line is ended by the enter key.

This is different from the interpreter, which ran each line
individually (though with the context of the previous lines).

20

Note: before you
can run a file, you
must save it in a
file on the system

Print Displays Data
Code run from a file doesn't show the evaluated result of every line (unlike code
run from the interpreter). If we want to display a result, we need to use the
command print.

print takes an input expression between parentheses, evaluates the
expression, and displays the evaluated result in the interpreter.

For example, assume we run these lines in the editor:
print(4 - 2) displays 2 in the interpreter.
print("15-110") displays 15-110; note that the quotes aren't included.
5 > 3 does not display True when run from the editor; it displays nothing and
the result is thrown away.

21

Activity: Hello World
You do: add a print command in the editor that prints the message "Hello,
World". Then run the program to see the output.

This is the traditional first program that you write in any new language!

22

Printing Multiple Values

If you want to display multiple values in the interpreter on the same line, you have two
choices.

First, if you're printing strings, you can concatenate them together.

print("Result:" + "2")

Alternatively, you can use commas in the print command to separate the values. It
will then separate the printed values with spaces automatically. This is helpful for
printing mixed types.

print("Result:", 2)

23

Comments are Ignored by the Computer

When writing a program with multiple lines, you might want to leave notes to yourself
outside of the program commands. Use comments to do this.

Any text that follows a # on a line will be ignored by the computer:
print("Hello World") # a greeting

To comment out a block of code, put """ or ''' at the beginning and end:
"""
print("ignore")
print("this")
"""

You can also select a block of code and click 'Toggle Comment' in Thonny to
comment/uncomment a block of code.

24

Error Messages

25

Syntax Needs to be Exact

Computers aren't very clever. If you change the syntax of code even a
little bit, the computer might not understand what you mean and will
raise an error.

Print("Hello World") # NameError

print "Hello World" # SyntaxError

When you get an error message, read it carefully. Error messages contain
useful information that will help you fix your code.

26

Debug Errors By Reading the Message

1. Look for the line number. This line tells you
approximately where the error occurred.

2. Look at the error type.

3. If it says SyntaxError, look for the inline
arrow. The position gives you more
information about the location of the
problem (though it isn't always right).

4. If it says something else, read the error
message. The error type and its message
gives you information about what went
wrong.

We'll talk more about the debugging process
in future lectures.

27

line number

inline arrow

error type

Activity: Debug the Code

You do: Let's practice debugging! Given the following code and error
message, determine A) what the problem is, and B) how to fix it.

28

Whitespace is Syntax, Sometimes

Be careful when using whitespace (spaces, tabs, and the return key) – it can
sometimes count as syntax too!

In general, whitespace at the beginning of a line has meaning; we'll discuss what
it means more in a few weeks. Whitespace in the middle of tokens causes
errors. Whitespace between tokens is okay.

 print("Hello World") # IndentationError

p r i n t ("Hello World") # SyntaxError

print ("Hello World") # this is okay!

29

Variables

30

Variables Let Us Store Data

Our last core building block is the variable. Variables let us save data so we can reuse it in
future computations.

A variable is a name that we define in the program (without quotes), like x or result. We
define a variable with an equal sign:

variable = expression

Note that the variable can only go on the left side of this code, and its value (or an expression
that evaluates to a value) goes on the right. For example:

myPet = "Stella"
result = 5 + 2
42 = foo # SyntaxError

31

Variables are like Sticky Notes
You can think of a variable as a sticky note that is applied to a
data value.

When you want to use the data value, you can use it directly
or refer to the name on the note.

You assign a variable to a value by writing the name on the
note and putting the note on the value.

32

Rules for Variable Names

Variable names can use any combination of uppercase letters, lowercase
letters, digits, and underscores. They must start with a letter or _.
Starting with a lowercase letter is recommended.

Variable names are case sensitive. For example, Banana is not the same
as banana.

Mistyping a variable name is a common cause of NameErrors.

33

Expressions vs. Statements
Python needs to keep track of certain pieces of data that change over time as a program
runs (like which variables exist and what their values are, what has been printed to the
screen, etc). We call this information the program state.

When you set a variable to a new value, you change the program's state. That makes
variable assignment too complex to be represented as expressions (which are more like
data values).

A statement is an action taken by the program that may change the program state. It
does not evaluate to a value; instead, it executes a change, then moves on to the next
line. Variable assignments are statements.

Variables themselves, on the other hand, actually are expressions – they evaluate to
their values!

34

Using and Updating Variables

Once we've defined a variable, we can use it in later expressions.

x = 5

y = x - 2 # x evaluates to 5

Unlike in math, we can also change the variable to a new value, if needed.

x = 5

x = x - 1 # x evaluates to 5 on the right

 # then changes to 4

print("x:", x) # x: 4

35

This is like moving
the sticky note to

a new value

Python is Sequential

Note that Python runs every line in order and doesn't peek ahead. If you
want to use a variable, you must define it before it is used.

print(foo) # this causes an error!

foo = 42

foo = 42

print(foo) # this is fine!

36

Activity: Trace the Variable Values

You do: Trace through the following lines of code. What values do a and b
hold at the end?

a = 4

b = 7

b = a - 2

a = a + 1

37

Augmented Assignment
It's common to update variables with variable assignment. Python has some nice built-
in syntax that provides a handy shorthand.

x = x + 1

is the same as

x += 1

You can also use -=, *=, /=, etc.

38

Learning Objectives

• Recognize and use the basic data types in programs

• Interpret and react to basic error messages caused by programs

• Use variables in code and trace the different values they hold

39

	Slide 1: #1-2: Programming Basics
	Slide 2: Learning Objectives
	Slide 3: Python and IDEs
	Slide 4: Programs are Algorithms for Computers
	Slide 5: Python is Simple and Highly Useful
	Slide 6: An IDE is a Text Editor for Programs
	Slide 7: Write in the Editor, Run in the Interpreter
	Slide 8: repl.it Editor and Interpreter
	Slide 9: Sidebar: How Files Work
	Slide 10: Data Types
	Slide 11: Data Is Information We Can Manipulate
	Slide 12: Numbers in Python
	Slide 13: Two New Math Operators
	Slide 14: Text in Python
	Slide 15: Truth Values in Python
	Slide 16: Type Mismatches Cause Errors
	Slide 17: Data Type Names
	Slide 18: Activity: Predict the Type
	Slide 19: Writing Code in Files
	Slide 20: Writing Longer Programs: Use the Editor
	Slide 21: Print Displays Data
	Slide 22: Activity: Hello World
	Slide 23: Printing Multiple Values
	Slide 24: Comments are Ignored by the Computer
	Slide 25: Error Messages
	Slide 26: Syntax Needs to be Exact
	Slide 27: Debug Errors By Reading the Message
	Slide 28: Activity: Debug the Code
	Slide 29: Whitespace is Syntax, Sometimes
	Slide 30: Variables
	Slide 31: Variables Let Us Store Data
	Slide 32: Variables are like Sticky Notes
	Slide 33: Rules for Variable Names
	Slide 34: Expressions vs. Statements
	Slide 35: Using and Updating Variables
	Slide 36: Python is Sequential
	Slide 37: Activity: Trace the Variable Values
	Slide 38: Augmented Assignment
	Slide 39: Learning Objectives

