
#1-3: Function Calls
CS SCHOLARS – PROGRAMMING

Learning Goals
Identify the argument(s) and returned value of a function call

Use libraries to import functions in categories like math and randomness

Use the graphics library to construct images algorithmically

2

Repeating Actions is Messy
Sometimes we want to perform the same
algorithm many times on different inputs.

For example, say we want to personalize a
young child's reading material so that it
uses their pet's name.

We could copy and paste the first bit of
code, then change the necessary parts.
But if we're sloppy this might cause
errors.

pet1 = "Spot"
pet2 = "Stella"
pet3 = "Kimchee"

print("See " + pet1 + ". See " + pet1 +
 " run. Run, " + pet1 + ", run!")

print("See " + pet2 + ". See " + pet2 +
 " run. Run, " + pet2 + ", run!")

print("See " + pet3 + ". See " + pet1 +
 " run. Run, " + pet3 + ", run!")

3

Functions Represent Abstract Actions
A better approach is to put the core action being repeated into a function.

A function is a code construct that represents an algorithm. We can define
a function once, then call it many times.

We can also use functions that have already been defined by Python.

4

Function Calls

5

Call Functions with Parentheses
We've already seen how to call a function on a specific input, because
print is just a function! This is done using parentheses.

functionName(input1, input2, ...)

The number of inputs provided inside the parentheses depends on how
many inputs the function expects. Each input should be an expression.

6

A Few New Functions
To help us explore how functions work, let's introduce a few new
functions. These are built-in functions, like print; that means we can call
them in Python directly.

abs(-2) # 2; absolute value

pow(2, 3) # 8; raises a number to the given power

round(12.4567, 2) # 12.46; rounds to given # sig digs

7

A Special Function
There's another built-in function that works differently from the others.
input(msg) displays a message in the interpreter, lets the user type a
response in the interpreter, then stores the response as a string when the
user presses enter.

input("Enter your name: ") # whatever the user typed

This will make it possible for you to write interactive programs more
easily! This will also let the user enter data interactively.

8

Type Functions
There are a few other built-in functions that are helpful to know, as they let you change the type
of data values. This is called type-casting, and it is especially useful when you need to change the
type of user input.

int("4") # 4; converts a value to an integer

float(3) # 3.0; converts a value to a float

str(98.9) # "98.9"; converts a value to a string

bool(0) # False; converts a value to a Boolean

type(4 + 3.0) # float; returns the type of the eventual value

uses the names we covered before – int, float, str, bool

9

Components of Functions
The functions we call have two core components:

Argument(s) – the values provided inside the parentheses, the input

Returned Value – what the function evaluates to after running, the output

11

Arguments Provide the Input
The specific inputs we provide to a function are called arguments. These are like
the specific bread, peanut butter, and jelly we used in the PB&J algorithm. In the
function call abs(4), the argument is 4.

Arguments are separated by commas and placed between the parentheses of the
function call. Functions can require as many (or as few) arguments as needed.

The positions of the arguments usually have meaning. In pow(2, 3), the first
argument is the base and the second argument is the exponent. In other words,
pow(2, 3) and pow(3, 2) mean two different things.

12

Receive Output as Returned Value
When a built-in function takes its arguments and runs through its
algorithm, we cannot see what it is doing.

When the function is done, it sends back an output as a returned value.
We usually say a function returns a value. This value substitutes in for the
function call the same way a variable's value substitutes in for the variable.

For example, the returned value of pow(2, 3) is 8.

13

Function Calls Follow Order of Operations
Function calls evaluate to a single returned value; that means they are
expressions. Therefore, we can nest function calls inside other expressions
the same way we nest basic values and operations.

round(pow(abs(-12), 1/2), 2)

Just like in math, functions follow order of operations using parentheses.
Start by evaluating the inner-most expressions, abs(-12) and 1/2. Then
evaluate the call to pow; finally, evaluate the call to round.

14

Activity: Write Code Using Functions
You do: write a line of code in the interpreter that takes a variable x which
holds a number as a string, turns it into an integer, and then doubles that
integer.

For example, if x = "21", then your line of code should produce 42

15

Side Effects Show Change
Recall that a program has a state that holds the current information that the
program knows (what has been printed, what values do the variables hold).

Function calls themselves are expressions, as they evaluate to a data value (the
returned value). But sometimes a function changes the program state in an
observable way as it is running; for example, it might display values in the
interpreter, or modify a file, or produce graphics. This is called a side effect.

If we call pow(2, 3), there is no observable side effect. However, input("How
are you?") has an observable side effect: it prints a message to the screen and
pauses the program until the user responds. input also has a returned value –
the message typed by the user.

16

Function Call Process

17

Function

Argument(s)

Returned
Value

Side
effect(s)

print works differently
Let's take a moment to talk about a function that works in a particularly confusing way:
print.

print takes any number of arguments (the values between the parentheses). It produces
a side effect when it concatenates those values and displays the result to the interpreter.

What is print's returned value? It could be the displayed value, but that would let us do
weird things like:

x = print(2) + 2 # sets x = 4 # but not really!

We probably don't want that. Instead, we'll say that print has no explicit output. But it's
not that simple!

18

Missing Returned Values are None
If a function produces no explicit output, it still has a returned value – we need
something to store in a variable or display. That value is the built-in value None.

None means that there was no explicit output to be returned. Like True and
False, its meaning is built into Python, so it does not need quotes.

If you try to set a variable to the returned value of a print call, you'll find that
the variable holds None; print always returns None.

Note that None does not show up in the interpreter unless you explicitly print
it; the interpreter just shows a blank instead.

19

Activity: Identify the Function Call Parts
Consider the following two function calls. For each function call, what are
its argument(s) and its returned value? Does it have any observable side
effect(s)?

round(3.14159, 1)

print("15", "-", "110")

21

Libraries

22

Import Adds Code from Libraries
The Python language has a ton of pre-built functions, but most aren't
included in the built-in package (the one available by default). Most of the
functions are organized into separate libraries.

To use a function from a library, you must import the library. This makes it
possible to access the functions and variables in that collection. You can do
this with the code:

import libraryName

23

Library Documentation Organizes Functions
How can you determine which functions exist in which libraries? Read the
documentation!

All the Python libraries have documentation online that describes which
functions are available and what they do. Find it by going to
docs.python.org/3/ .

There are a great many libraries and functions, so it's better to check the
documentation as needed than to try to memorize all the functions that
exist.

24

https://docs.python.org/3/

Importing the math Library
For example, we can import the math library to add more mathematical
capabilities. Note that we must put math. in front of each function or variable
name we use, to specify it came from that library.

import math

math.ceil(6.5) # 7; ceiling of a float number

math.log(64, 2) # 6.0; finds the log of 64 with base 2

math.radians(90) # 1.570...; converts degrees to radians

math.pi # 3.141..; it's π!

25

Importing the random library
Importing libraries lets us get more creative with programming. For example, the
random library lets us generate random numbers, which can help produce novel
behavior.

import random

random.randint(1, 10) # picks a random int between 1-10 inclusive

random.random() # picks a random float between 0-1

26

Activity: Try Out Libraries
You do: try importing the math or random library in the interpreter and
calling functions in them. Read the documentation to see if you can find
new functions that they implement. See what you can observe about how
they work.

27

Graphics Library

28

Importing a graphics library
By using libraries, we can write code that does more than just produce text
on the screen. We can even produce graphics with programming! We'll do
this with the tkinter library, which makes it possible to draw shapes on a
separate screen.

import tkinter

29

Tkinter Starter Code
We need to run some code before and after our
graphics code to make it work.

The root is the window. The canvas is the
thing on the window where we can draw
shapes.

The root.mainloop() line will tell the
window to stay open until we press the X
button.

You do: Try copying this code into your editor
and running it. You should see a window pop
up!

import tkinter

root = tkinter.Tk()
canvas = tkinter.Canvas(root,
 height=400,
 width=400)
canvas.configure(bd=0, highlightthickness=0)
canvas.pack()

write your code here

root.mainloop()

30

Coordinates on the Canvas Grow Down-Right
The canvas created by the starter code is the thing we'll draw graphics on. It's a
two-dimensional grid of pixels. This grid has a pre-set width and height; the
number of pixels from left to right and the number of pixels from top to bottom.

We can refer to pixels on the canvas by their (x, y) coordinates. However, these
coordinates are different from coordinates on mathematical graphs – the origin
starts at the top left corner of the canvas.

31

(0, 0) (width, 0)

(0, height) (width, height)

canvas

Drawing a Rectangle
To draw a rectangle, use the function canvas.create_rectangle. This
function takes four required arguments: the x and y coordinates of the left-
top corner, and the x and y coordinates of the right-bottom corner. The
rectangle will then be drawn between those two points.

canvas.create_rectangle(10, 50, 110, 100)

32

(10, 50) (110, 50)

(10, 100) (110, 100)

Graphics – Side Effects and Returned Values
When the rectangle is drawn on the canvas, we can't use it in future
computations. That's a side effect.

The graphics function call also returns something – an integer ID
associated with the drawn shape. We won't use that value in this class.

33

Keyword Arguments Add Variety
With the basic parameters, we can only draw outlines of shapes. By adding keyword
arguments, we can change the properties of these shapes.

A keyword argument is an argument that is associated with a specific name instead of a
position in the function call. We can put keyword arguments in any order we like as long
as they occur after the main arguments.

Keyword arguments can have default values, which is why we don't need to include
them in every graphics call. To change that default value, include the keyword, followed
by =, followed by the new value in the function call.

canvas.create_rectangle(50, 100, 150, 200, fill="green")

34

Keyword Argument - fill
The fill argument can be used on any shape. It uses a string (the
name of the color) to change the color of the shape.

Note that when we draw shapes on top of each other, the one on top is
the last one called. Order matters!

Interested in finding more Tkinter color names? There's a whole
databank!
https://wiki.tcl-lang.org/page/Color+Names%2C+running%2C+all+screens

35

canvas.create_rectangle(40, 40, 80, 140, fill="red")

canvas.create_rectangle(30, 80, 30 + 120, 80 + 120,
 fill="green")

canvas.create_rectangle(90, 70, 180, 120, fill="blue")

https://wiki.tcl-lang.org/page/Color+Names%2C+running%2C+all+screens

Activity: Draw Some Rectangles
Try using canvas.create_rectangle and the fill keyword argument
to draw some rectangles on the Tkinter canvas.

Can you get one of the rectangles to draw as a square?

Can you center one of the rectangles?

36

Problem Solving with Graphics
We can put a rectangle anywhere on the screen by choosing the right
arguments, but how do we determine what those arguments should be?

Use mathematical logic! Determine where you want the rectangle to be
based on other locations (the sides of the window or other shapes).

You can use variables to give meaningful names to numbers, which may
make it easier to represent what you want.

37

Example: Centering a Square
Problem: we want to draw a square at the
bottom-center of the screen, so the bottom
edge is touching the bottom of the screen.

What do we know?
◦ The shape is a square, so the height and width

must be the same. In other words, (right-left)
and (bottom-top) must be the same. Let's call
the height and width size.

◦ The shape is centered horizontally, so the
middle of the square must be in the middle of
the screen: screenWidth/2. From the middle,
subtract size/2 to get the left position, and
add size/2 to get the right position.

◦ The shape is aligned with the bottom, so the
bottom must be the same as the screen
height. That means the top must be
screenHeight - size

w = 400 # screen width

h = 400 # screen height

size = 100 # square side length

canvas.create_rectangle(w/2 - size/2,
 h - size,
 w/2 + size/2,
 h,
 fill="red")

38

Drawing an Oval
We can draw more shapes than just rectangles. To draw an oval, use
create_oval. This function uses the same parameters as
create_rectangle, where the coordinates mark the oval's bounding
box.

canvas.create_oval(10, 50, 110, 100)

39

(10, 50) (110, 50)

(10, 100) (110, 100)

Keyword Argument - width
Another keyword argument is width, which specifies how many
pixels wide the border of the shape should be.

Note that setting width to 0 removes the border completely.

40

canvas.create_rectangle(40, 40, 80, 140, width=5)

canvas.create_oval(30, 80, 150, 200,
 width=20, fill="green")

canvas.create_rectangle(90, 70, 180, 120,
 fill="blue", width=0)

Drawing Lines
To draw a line on the screen, you specify the two
endpoints of the line.

Again, we can use fill and width to modify the
lines.

canvas.create_line(200, 300, 400, 350)

canvas.create_line(20, 100, 90, 300, fill="green")

canvas.create_line(100, 100, 300, 300, width=5)

41

Drawing Polygons
To draw a polygon, you need to specify the coordinates of each of the polygon's
points as an x, y coordinate, in perimeter order.

The polygon can have as many points as needed but will need at least three
points to appear.

canvas.create_polygon(10, 10, 50, 150, 100, 50)

canvas.create_polygon(200, 200, 400, 400, 0, 400,

 fill="orange")

canvas.create_polygon(200, 100, 300, 0, 400, 100, 300, 200,

 outline="green", width=5)

Note here that we've also added a new keyword argument – outline, which
specifies the color of the shape's outline.

Drawing Text
Drawing text on the canvas works a bit differently from drawing rectangles,
ovals, lines, and polygons. We specify only one coordinate – the pixel
where the center of text will be drawn.

canvas.create_text(200, 200, text="Hello World")

Although text is keyword argument and technically optional, text is
required in order to draw text at all.

43

Keyword Argument - font
When drawing text, we can use the keyword argument font to
change the appearance of the text.

The font parameters takes a string with one to three pieces of
information – the font name, the font size, and the font type.

You can find a full list of fonts and types here:
https://effbot.org/tkinterbook/tkinter-widget-styling.htm#fonts

44

canvas.create_text(200, 200, text="Hello World!",
 font="Arial")

canvas.create_text(100, 100, text="This is fun!",
 font="Times 30")

canvas.create_text(300, 300, text="weewooweewoo",
 font="Courier 10 italic")

https://effbot.org/tkinterbook/tkinter-widget-styling.htm#fonts

Keyword Argument - anchor
The point used in the canvas.create_text call is actually an anchor for
the text, to describe where it is drawn from. That anchor defaults to the
center of the text box, but we can change it to be any compass point
instead.

Note that the anchor describes the point on the text box that will
correspond to the (x, y) coordinate. Since CCC's anchor is "ne" (north-
east), the upper-right corner of the text box is placed at (400, 0).

45

canvas.create_text(200, 200, text="AAA",
 font="Times 30", anchor="center")

canvas.create_text(0, 200, text="BBB",
 font="Times 30", anchor="w")

canvas.create_text(400, 0, text="CCC",
 font="Times 30", anchor="ne")

Drawing images
If we want to use a pre-made image in Tkinter, we can load one in as a PhotoImage. This
can be created with:

img = tkinter.PhotoImage(file="sample.gif")

We can resize the image if needed, using subsample to make it smaller and zoom to
make it bigger.

img = img.subsample(5) # make the image 5 times smaller

img = img.zoom(2) # make the image twice as large

Unfortunately, PhotoImages can only be .pgm, .ppm, and .gif files. For more filetypes,
use the external module Pillow, described in the advanced slides this week.

Drawing images
Once you've created an image, you can draw it with create_image. This
method takes the x, y coordinates of the image and can have other optional
parameters:

the image to be displayed. not really optional...

canvas.create_image(200, 100, image=imageVar)

the anchor point of the coordinate.

Same as for text, default "center"

canvas.create_image(200, 100, image=imageVar, anchor="n")

Tkinter Can Do Even More!
There's plenty of things Tkinter can draw and plenty of additional keyword
arguments that we haven't covered here.

If you're interested in learning more, check out the Tkinter documentation:

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/index.html

48

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/index.html

Learning Goals
Identify the argument(s) and returned value of a function call

Use libraries to import functions in categories like math and randomness

Use the graphics library to construct images algorithmically

49

	Slide 1: #1-3: Function Calls
	Slide 2: Learning Goals
	Slide 3: Repeating Actions is Messy
	Slide 4: Functions Represent Abstract Actions
	Slide 5: Function Calls
	Slide 6: Call Functions with Parentheses
	Slide 7: A Few New Functions
	Slide 8: A Special Function
	Slide 9: Type Functions
	Slide 11: Components of Functions
	Slide 12: Arguments Provide the Input
	Slide 13: Receive Output as Returned Value
	Slide 14: Function Calls Follow Order of Operations
	Slide 15: Activity: Write Code Using Functions
	Slide 16: Side Effects Show Change
	Slide 17: Function Call Process
	Slide 18: print works differently
	Slide 19: Missing Returned Values are None
	Slide 21: Activity: Identify the Function Call Parts
	Slide 22: Libraries
	Slide 23: Import Adds Code from Libraries
	Slide 24: Library Documentation Organizes Functions
	Slide 25: Importing the math Library
	Slide 26: Importing the random library
	Slide 27: Activity: Try Out Libraries
	Slide 28: Graphics Library
	Slide 29: Importing a graphics library
	Slide 30: Tkinter Starter Code
	Slide 31: Coordinates on the Canvas Grow Down-Right
	Slide 32: Drawing a Rectangle
	Slide 33: Graphics – Side Effects and Returned Values
	Slide 34: Keyword Arguments Add Variety
	Slide 35: Keyword Argument - fill
	Slide 36: Activity: Draw Some Rectangles
	Slide 37: Problem Solving with Graphics
	Slide 38: Example: Centering a Square
	Slide 39: Drawing an Oval
	Slide 40: Keyword Argument - width
	Slide 41: Drawing Lines
	Slide 42: Drawing Polygons
	Slide 43: Drawing Text
	Slide 44: Keyword Argument - font
	Slide 45: Keyword Argument - anchor
	Slide 46: Drawing images
	Slide 47: Drawing images
	Slide 48: Tkinter Can Do Even More!
	Slide 49: Learning Goals

