
Advanced Programming
#1: Python Modules
CS SCHOLARS – PROGRAMMING

Learning Goals
Learn how to install and use external modules

Identify common popular modules for the Python language

2

Python Libraries
When you install Python on a machine, it comes with a large number of
built-in libraries that provide functionality beyond the built-in syntax and
functions. We've already introduced some: math, random, and tkinter.

However, there are many other libraries that have been built by
developers outside of the core Python team, to add additional
functionality to the language. These modules don't come as part of the
Python language, but can be added in. We call these external modules.

3

Using External Modules

4

Finding Useful Modules
One of the main strengths of Python as a language is that there are
thousands of external modules available, which means that you can start
many projects based on work others have done instead of starting from
scratch.

You can find a list of popular modules here:
wiki.python.org/moin/UsefulModules

And a more complete list of pip-installable modules here: pypi.org

5

https://wiki.python.org/moin/UsefulModules
https://pypi.org/

Install External Modules with pip
In order to use an external module, you must first install it on your machine. To install,
you'll need to download the files from the internet to your computer, then integrate
them with the main Python library so that the language knows where the module is
located.

It is usually possible to install modules manually, but this process can be a major pain.
Luckily, Python also gives us a streamlined approach for installing modules – the pip
module! This feature can locate modules that are indexed in the Python Package Index
(a list of commonly-used modules), download them, and attempt to install them.

Traditionally, programmers run pip from the terminal. This is a command interface that
lets you make changes directly to your computer. But in this class, we'll just run pip in
Pyzo.

6

Running pip
To run pip in Pyzo, use this command in the interpreter

pip install module-name

This will identify the module and your version of Python and start the
download and installation process. It may run into a dependency error if
the module needs a second module to already be installed – in general,
installing that module and then running pip again will fix the problem.

7

Using an Installed Module
Once you've successfully installed a module, you should be able to put

import module-name

at the top of a Python file, and it will load the module the same way it would load a
built-in library.

Note: this may fail if you have multiple versions of Python installed on your machine and
you install in the terminal. Make sure to use the pip associated with the version of
Python you're using in your editor. You can check your editor's version in Pyzo with Shell
> Edit Shell Configurations (check the value in exe), then call pip using

pythonversion-number -m pip install module-name

8

Learning how a Module Works
Once a new module is installed, you're still left with one major question: how do you use it?

This varies by module, but the best answer is to read the documentation. Most external
modules have official documentation or APIs that describe which functions exist and how to use
the module.

It can also be helpful to search online for other projects that have used the same module, to find
examples of how to set it up. Many people have written helpful tutorials online for this exact
purpose.

Two standard resources for finding help are StackOverflow, a site where people can ask
questions about code and get answers from other developers, and GitHub, a site where people
post open-source projects for others to use and contribute to.

9

https://stackoverflow.com/
https://github.com/

Reminder: always cite others' work!
You'll sometimes find a useful bit of code in a StackOverflow post or a GitHub project that you'll
want to use in your own project.

Whenever you copy code from online, make sure to cite it the same way you would cite a
paragraph of text in an essay. You can do this by putting a comment above the copied code that
includes a link to the URL you got the code from.

This serves two purposes. First- it gives credit to the individual who originally wrote the code.
Second- if you run into a problem with the code later on, you'll be able to look back to the
original source to find a solution.

Note: policies around copying code change when you're working on a commercial product. Read
the fine print if you're planning to sell your code!

10

Module Index
Math: NumPy, SciPy

Data Analysis: Matplotlib, pandas

Machine Learning: scikit-learn

Computer Vision: OpenCV

Natural Language Processing: nltk

Websites: Django, Flask

Webscraping: Beautiful Soup

Images: Pillow

Audio: Pydub

Game Design: Pygame

3D Graphics: VPython

11

Data Analysis
External Modules

12

SciPy Collection
SciPy is a group of modules that support advanced mathematical and scientific operations. It can
handle large calculations that might take the default Python operations too long to compute.

The group includes NumPy (which focuses on core math), SciPy (math and science functions),
pandas (data analysis), and Matplotlib (plotting of charts and graphs). These can be used
separately or as a group. Each need to be installed separately, but can be installed directly with
pip install name

Website: https://www.scipy.org/

Note: most of the SciPy Collection slides require knowledge of Python lists.

We'll learn about lists in Week 4.

13

https://www.scipy.org/

NumPy
NumPy's main purpose is to support mathematical operations in Python.

That may not seem necessary at first, since Python already has support for
many math operations in the built-in libraries, but NumPy has the
advantage of being very efficient; that makes it a great library to use on
large datasets.

14

NumPy Arrays
NumPy mostly works as you would expect
for a Python library. Its main difference is
that it organizes numbers in lists
differently from regular Python.

NumPy creates special array objects of
varying dimensions (like one- and two-
dimensional lists); these arrays can
represent vectors or matrices in
mathematical calculation.

import numpy as np

np.array([10, 20, 30, 40])

[10 20 30 40]

np.array([[1, 2, 3], [4, 5, 6],

 [7, 8, 9]])

[[1 2 3]

[4 5 6]

[7 8 9]]

15

NumPy Arrays – Operations
NumPy supports a lot more built-in
operations on arrays that Python does
on lists. For example, you can directly
add a number to an array; that will add
the number to each of the numbers
inside the array.

You can also directly subtract one array
from another; that will take the
difference of the numbers at matching
indexes.

import numpy as np

a = np.array([10, 20, 30, 40])

b = np.array([5, 6, 7, 8])

a + 2 # [12 22 32 42]

a - b # [5 14 23 32]

16

NumPy Arrays - Indexing
In addition to all of this, NumPy also
supports more advanced indexing
into multi-dimensional arrays.

For example, if you make a 2D array,
you can index into it with row
comma col instead of needing to
use two indexes. This can be quite
handy!

import numpy as np

c = np.array([[1, 2, 3],

 [4, 5, 6], [7, 8, 9]])

c[1, 2] # 6

17

NumPy Functions
NumPy does have its own set of mathematical functions- for example, it
can generate random numbers.

x = numpy.random.randint(1, 10)

random number in [1, 10]

However, it's mostly used as a support library for other libraries that want
to use more efficient mathematical operations when doing statistics, or
science, or engineering tasks.

18

SciPy
Next, let's look at the SciPy library. SciPy provides functions for scientific
computation, mostly relying on NumPy for lower-level calculations.

The SciPy functions tend to be a bit higher-level so that you can run whole
processes automatically instead of scripting them yourself.

SciPy also splits its functions into different sub-libraries. For example,
there's a sub-library called linalg for linear algebra, one called signal for
signal processing, and one called stats for statistics.

19

SciPy Functions
SciPy isn't too hard to use when you have a
specific purpose in mind. Just find the sub-
library that corresponds to what you want to
do, set up your data properly, and run the
function.

For example, if you want to find the inverse of
a matrix (where your matrix times its inverse
equals the identity matrix), there's a function
for that!

Just import the linalg sub-library, set up your
matrix as a NumPy two-dimensional array,
then run linalg.inv.

import numpy as np

from scipy import linalg

a = np.array([[1, 2], [3, 4]])

linalg.inv(a))

[[-2. 1.]

[1.5 -0.5]]

20

Matplotlib
The matplotlib library can be used to generate interesting visualizations in
Python. This is great for data analysis!

The way that specific types of charts and graphs are set up can vary a lot,
but there are some core components to every chart that are consistent.

21

Draw Visualizations on the Plot
Matplotlib visualizations can be broken down into
several components. We'll mainly care about one:
the plot (called plt). This is like Tkinter's canvas,
except that we'll draw visualizations on it instead of
shapes.

We can construct an (almost) empty plot with the
following code. Note that matplotlib comes with
built-in buttons that let you zoom, move data
around, and save images.

import matplotlib.pyplot as plt

plt.title("Empty")
plt.show()

22

Add Visualizations with Methods
There are lots of built-in methods that let
you construct different types of
visualizations. For example, to make a
scatterplot use plt.scatter(xValues,
yValues).

x = [2, 4, 5, 7, 7, 9]

y = [3, 5, 4, 6, 9, 7]

plt.scatter(x, y)

plt.show()

23

Visualization Methods have Keyword Args
You can customize how a visualization looks by adding keyword
arguments. We used these in Tkinter to optionally change a
shape's color or outline; in Matplotlib we can use them to add
labels, error bars, and more.

For example, we might want to create a bar chart (with plt.bar)
with a unique color for each bar. Use the keyword argument color
to set the colors.

labels = ["A", "B", "C", "D", "E"]

yValues = [10, 40, 36, 46, 21]

colors = ["red", "yellow", "green",

 "blue", "purple"]

plt.bar(labels, yValues, color=colors)

plt.show()

24

Matplotlib Approaches
If you browse the Matplotlib website, you'll see that charts can be drawn with one of
two different approaches - object oriented or procedural.

The object-oriented approach lets you break down the window into objects, then
control each object independently. Charts are drawn by calling methods on appropriate
objects. We'll talk more about object-oriented coding in future advanced slides.

The procedural approach instead has you call all functions from one central library,
matplotlib.pyplot, which is usually aliased to plt. Charts are drawn by calling functions
to set up all the elements you want.

Either approach is generally fine- just pick one and stick with it.

25

Fig and Ax
Here's a quick thing to know if you're using the object-oriented approach. Every graph is
drawn in a figure, which has some number of axes. A figure is like a window that pops
up on your screen; an axis is a part of that window dedicated to one specific
visualization.

To interact with the figure and axis directly, call plt.subplots to access the two objects.
This function returns two objects, so you should set up two variables to capture the
results. This can be done easily with fig, ax = plt.subplots().

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

26

Pandas
Pandas is specifically built to support data analysis for data in
spreadsheets, or tables. It's great for Excel-style coding.

Pandas mostly works on a kind of data structure called a DataFrame,
which is basically a spreadsheet table.

27

Pandas DataFrames
DataFrames act a bit like 2D lists, except
that it's as easy to access data by column
as it is to access data by row.

You can set up a DataFrame directly from
a 2D list fairly easily, as is shown here.

Note that, like in NumPy arrays, the
DataFrame is displayed a little differently-
there are no commas between values, and
the row and column indexes are included
directly.

import pandas as pd

df = pd.DataFrame([[1, 2, 3],

 [4, 5, 6]])

df

0 1 2

0 1 2 3

1 4 5 6

28

Pandas DataFrame Columns
Where DataFrames get really
interesting is that you don't
need to refer to columns by
index.

You can give them names
instead, just like you often
would in a spreadsheet with a
header!

We can do this by adding a
keyword argument, columns,
with a list of column names.

import pandas as pd

df = pd.DataFrame([["15-110", "Principles of Computing", 10],

 ["15-112", "Fundamentals of Programming and CS", 12],

 ["15-251", "Great Ideas in Theoretical CS", 12]],

 columns=["Course Number", "Course Name", "# Units"])

df

Course Number Course Name # Units

0 15-110 Principles of Computing 10

1 15-112 Fundamentals of Programming and Computer Science 12

2 15-251 Great Ideas in Theoretical Computer Science 12

29

Pandas DataFrame Indexing
Once you have a DataFrame set up, you
can index into it by column with a
normal index operation, just by
providing the column name.

For example, if we index by "Course
Number" in the DataFrame we've
created here, we'll get the values in that
column of the table.

Note that when the values are displayed,
they're paired with their row indexes,
and the column name and type are
shown at the bottom. Handy!

import pandas as pd

df = pd.DataFrame([["15-110", "Principles of Computing", 10],

 ["15-112", "Fundamentals of Programming and CS", 12],

 ["15-251", "Great Ideas in Theoretical CS", 12]],

 columns=["Course Number", "Course Name", "# Units"])

df["Course Number"]

0 15-110

1 15-112

2 15-251

Name: Course Number, dtype: object

30

Pandas Functions
Outside of DataFrames, the
pandas library works about the
way you'd expect. You can call
methods on DataFrames to
analyze the data in them or
modify the table as needed.

For example, if we want to get
the median number of units of
all the courses in the dataset,
we just need to index into the #
Units column, then call the
median() method on that set of
data values.

import pandas as pd

df = pd.DataFrame([["15-110", "Principles of Computing", 10],

 ["15-112", "Fundamentals of Programming and CS", 12],

 ["15-251", "Great Ideas in Theoretical CS", 12]],

 columns=["Course Number", "Course Name", "# Units"])

df["# Units"].median()

12.0

31

Machine Learning
External Modules

32

Machine Learning Overview
Machine learning is the process of algorithmically finding patterns in a dataset,
so that a machine can answer questions about new data or group similar pieces
of data together.

There are many, many different algorithms that have been designed to support
machine learning. Most machine learning libraries implement those algorithms
for you; all you need to do is decide which algorithm is the best fit for your data

For general machine learning, we'll recommend scikit-learn. For specialized
algorithms, we'll discuss OpenCV and nltk.

33

scikit-learn
scikit-learn is a module that supports a large set of machine learning
algorithms in Python. If you want to dabble in machine learning or artificial
intelligence, this is a good place to start. Note that you'll still need to
provide a starting dataset to get any algorithm to work.

Website: https://scikit-learn.org/stable/

Install:

pip install scikit-learn

34

https://scikit-learn.org/stable/

Understanding Algorithms
Running algorithms with scikit-learn isn't too hard; you just call methods on your data
to set up a model and then use the model to make predictions or check results as
needed.

The harder part of machine learning is understanding how the algorithms work, and
knowing which algorithm to use for any given task.

There's no shortcut for this; you just have to do a lot of learning to get familiar with lots
of different possible approaches.

We'll cover machine learning in the advanced slides for Week 5, and we'll talk more
about how to choose the proper algorithm there.

35

scikit-learn Demo
Let's just look at one example to see what the general process looks like.

I've got a grade dataset - five quiz grades and a final exam grade for a set
of 145 students - and I want to cluster the data points, to see which
groups naturally emerge.

I'll use a clustering algorithm for this, and I'll specifically choose to use K-
means clustering.

36

Loading Data from a File
We'll go over how to load data from files later in the program (in Week 4). For
now, we'll just use the built-in csv library to load a spreadsheet into a 2D list.

import csv

f = open("grades.csv", "r")

reader = csv.reader(f)

data = list(reader)

f.close()

37

Running the Algorithm
Next, we need to create a model based on the data.

We'll run the KMeans algorithm and tell it to create three clusters. Then we'll fit
that model to the dataset. The resulting model is an object with certain
properties.

from sklearn.cluster import KMeans

model = KMeans(n_clusters=3).fit(data)

38

scikit-learn Model Properties
For example, you can check what the average scores of the three clusters
are by looking at the cluster_centers_ property. The first five
numbers are quiz scores, and the last is a final exam score.

model.cluster_centers_

[[89.4271 94.4223 91.5873 95.2281 91.7184 87.7427]

[61.7857 81.7857 48.9285 80.6428 66.4285 63.5]

[87.1 89.7 66.2857 90.6285 90.7142 79.]]

39

scikit-learn Model Properties
How many students are in each cluster? You can check that by looking at the labels_ property. This shows
which cluster label was assigned to each data point. By turning the labels list into a list and running the
count method, you can check how many students are in each group.

model.labels_

[0 2 0 0 0 2 0 2 0 2 0 0 2 2 0 0 0 0 2 2 0 0 0 0 0 0 0 2 2 0 0 2 2 2 1 2 0

0 0 0 2 2 0 0 2 0 0 1 2 0 0 0 2 0 0 0 0 0 1 0 2 0 0 0 0 0 2 0 0 0 0 1 0 2

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 2 0 0 2 2 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 2 0 0 0 0 2 0 0 0 0 2 2 1 0 2 2 0 0 2 0 0 0 0 0 0 0 2 0 0 0]

L = list(model.labels_)

L.count(0) # 103

L.count(1) # 7

L.count(2) # 35

40

scikit-learn Model Functions
Finally, if you want to use this model to put a new data point into one of
the clusters, use the predict method.

Predict takes a list of data points, so put the single data point in another
list. The result is the cluster that the student is assigned to.

student = [60, 70, 75, 80, 85, 87]

model.predict([student]) # [2]

41

OpenCV
The OpenCV library is a good choice if you want to do machine learning with
images. CV in this case stands for computer vision.

You can install it under the name opencv-python, then import it with the name
cv2. Usually this gets aliased to cv.

pip install opencv-python

import cv2 as cv

42

OpenCV Example
OpenCV lets you load images and
recognize features in them, like lines, or
corners, or digits.

For example, let's say I want to detect
edges in an image. First, I can load an
image with imread.

I can check that image with imshow too if I
want to! But I have to set up a line of code
afterwards so that the program knows to
keep the window open and close it when
you press x.

import cv2 as cv

img = cv.imread("dog.jpg")

cv.imshow("Image Window", img)

k = cv.waitKey(0)

43

OpenCV Example
To detect lines in the image, I need to call
a method on the image object. I'll use a
Laplacian algorithm and set the depth
threshold fairly low.

Now we can see that the algorithm
automatically detected edges around the
dog, and the mat she was laying on. Pretty
cool!

Being able to detect these kinds of
features makes it easier to run images
through machine learning algorithms.

import cv2 as cv

img = cv.imread("dog.jpg")

lines = cv.Laplacian(img, cv.CV_8U)

cv.imshow("Image Window", lines)

k = cv.waitKey(0)

44

nltk
nltk, the Natural Language Toolkit, assists with natural language
processing for machine learning purposes. This is useful whenever you're
working with a corpus of written texts.

Website: https://www.nltk.org/

Install:

pip install nltk

45

https://www.nltk.org/

nltk Functions
One handy thing you can
do with nltk is to tokenize
text. This takes a sentence
and breaks it up into
words.

Note that this doesn't just
split up the string by
spaces- it intelligently
breaks up words based on
punctuation as well.

import nltk

text = '"My heart is in the work!" Andrew said.'

nltk.word_tokenize(text)

['``', 'My', 'heart',

 'is', 'in', 'the',

 'work', '!', "''",

 'Andrew', 'said', '.']

46

nltk Functions
You can also do sentiment analysis with
nltk, where you build a model to detect
whether a piece of text is generally
positive, negative, or neutral based on
the words in contains.

You can train your own model, but you
can also use a pre-built model by
importing the
SentimentIntensityAnalyzer, which is in
the sub-library sentiment.

Then you can just call the method
polarity_scores on the text you want to
score to see what the model thinks!

import nltk.sentiment

analyzer = nltk.sentiment.SentimentIntensityAnalyzer()

analyzer.polarity_scores('"My heart is in the work!" Andrew said.')

{'neg': 0.0, 'neu': 1.0, 'pos': 0.0, 'compound': 0.0}

analyzer.polarity_scores("Today is such a beautiful day!")

{'neg': 0.0, 'neu': 0.488, 'pos': 0.512, 'compound': 0.636}

analyzer.polarity_scores("I'm in a bad mood. Go away.")

{'neg': 0.412, 'neu': 0.588, 'pos': 0.0, 'compound': -0.5423}

47

Web Development
External Modules

48

Regular Web Design
If you want to build a simple website- something that will just display
some text and images, perhaps - you should stick to the core languages of
website design, HTML for content structure and CSS for styling.

And if you just want to program in a little interactivity, the language
Javascript is easy to integrate with HTML and CSS, and is commonly paired
with those languages.

But if you want to build a more complex website that keeps track of user
state and saves data, Python can help you out!

49

Django
Django is a module that lets you build interactive websites using Python.
This involves setting up a frontend (the part of a website that the user sees
while browsing) and a backend (the part of a website that processes
requests and does the actual work).

Website: https://www.djangoproject.com/

Install:

pip install django

50

https://www.djangoproject.com/

Django Principles
The core principles behind Django are that it is object-oriented and it uses
databases extensively.

Django uses objects to represent the data tracked by a website. For example, a
User object might have properties like username, and password, and items in a
shopping cart.

A database is a data structure that's based on a table. Databases are designed to
be able to hold a lot of data and to make it easy to look up data based on
specific properties.

51

Programming with Django
Programming websites in Django is pretty complicated. You should learn
about functions, dictionaries, and object-oriented programming before
attempting it.

Once you're ready, you can work through a tutorial of how to set up a
Django website here:

https://docs.djangoproject.com/en/3.2/intro/tutorial01/

52

https://docs.djangoproject.com/en/3.2/intro/tutorial01/

Flask
Flask is also a module that lets you build interactive websites using
Python. But Flask starts with a simple, lightweight website, instead of
requiring you to set up a database and objects first.

Website: https://flask.palletsprojects.com/

Install:

pip install flask

53

https://flask.palletsprojects.com/

Programming in Flask
You can set up a simple website in Flask pretty easily, just by using a function and some advanced Python syntax.

import flask

app = flask.Flask("Example")

@app.route("/")

def tutorial():

 return "<p>My Website</p>"

But if you want to make more advanced websites, you'll still need to learn some complex Python syntax first.

54

Beautiful Soup
Beautiful Soup is a module that supports webscraping and HTML parsing.
This is useful if you want to gather data from online for use in an
application.

Website: https://www.crummy.com/software/BeautifulSoup/

Install:

pip install beautifulsoup4

55

https://www.crummy.com/software/BeautifulSoup/

Parse HTML as Tags
HTML organizes content on a page using tags, like this:

<tag attribute="value">

 <subtag> Some content for the subtag </subtag>

</tag>

To parse a website, you need to look for a certain type of tag in the file.

56

Load HTML with urllib
First, how can you get the HTML of a website?

There's a handy built-in library for that, urllib. It doesn't work in all cases (like when authentication is
required), but it works for basic websites.

from bs4 import BeautifulSoup

import urllib.request

page = urllib.request.urlopen("https://docs.python.org/3/")

text = page.read()

doc = BeautifulSoup(text, 'html.parser')

57

BeautifulSoup Navigation
You can access the content of a BeautifulSoup page with tag names.

For example, at the top level of the whole document, request the title of the
page by accessing the property title, with a period between the variable and the
property. Or access the whole body of the page with the property body.

doc = BeautifulSoup(text, 'html.parser')

doc.title # <title>3.9.6 Documentation</title>

doc.body # <body><div aria-label="related navigation" ...

58

More BeautifulSoup Navigation
Sometimes tags will have other tags inside them. When this happens, you can continue
accessing specific tags at each level.

doc.body.p # <p>Welcome! This is the documentation for Python ...

For example, to get the first paragraph tag in the body, use doc.body.p.

If you want to get the text within that tag, just use the string property.

doc.body.p.string # '\n Welcome! This is the documentation for ...

59

BeautifulSoup Functions
Note: this and the next slide use lists, dictionary indexes, and loops

To get all the tags of a certain type in the document, instead of just the first tag of that type, use the method find_all on
the document. This produces a list of all the tags of that type.

a_tags = doc.find_all('a')

a_tags

[index,

modules,

Python,

3.9.6 Documentation,

...]

60

BeautifulSoup Attributes
Note that some of those a tags had properties. You can access the property of a tag with a dictionary index.

a_tags[0]["href"]

"genindex.html"

So if I wanted to get all the links on a webpage, I could use this:

for tag in a_tags:

 print(tag["href"])

genindex.html

py-modindex.html

https://www.python.org/

...

61

Creative External Modules

62

Pillow: Python Imaging Library
Pillow is a lightweight and easy-to-install module that lets you manipulate images
beyond .gif files. It lets you modify images, or use different types of images in Tkinter.

Website: https://pillow.readthedocs.io/en/stable/index.html

Install:

pip install pillow

Import:

import PIL

63

https://pillow.readthedocs.io/en/stable/index.html

Pillow Images
Pillow makes it very easy to open image
files, using the Image.open function. You
can even display those images with
image.show(), or save them with
image.save()

from PIL import Image

img = Image.open("stella.jpg")

img.show()

img.save("new-stella.jpg")

64

Pillow Image Functions
You can provide Pillow images to the Tkinter create_image function,
but you can also manipulate them directly!

There are functions that let you crop and resize pictures within the
program, and much more! However, some of these functions require
that you use lists to hold the dimensions of the picture.

new_img = img.crop([200, 200, 3500, 2500])

new_img.save("new-stella.jpg")

new_img_2 = img.rotate(180)

new_img_2.save("new-stella-2.jpg")

new_img_3 = img.resize([1000, 1000])

new_img_3.save("new-stella-3.jpg")

65

Pydub
Pydub makes it possible to play and edit audio files! However, it needs a few
additional libraries to work really robustly. First, you'll need to install the library
simpleaudio to play the edited sounds.

Website: https://github.com/jiaaro/pydub

Install:

pip install simpleaudio

pip install pydub

66

https://github.com/jiaaro/pydub

Pydub AudioSegments
Pydub lets you load a sound file into an AudioSegment object. It's then really easy to play the sounds and
edit them!

Unfortunately, by default the library only supports .wav files. It's possible to get the library to work on more
popular filetypes (like .mp3 files), but requires a lot of complicated installations.

First, let's just look at a simple example with a .wav file. Note that once the file starts playing, it will
continue until the song ends; you'll need to interrupt the program by pressing the lightning bolt button if
you want to stop it early.

from pydub import AudioSegment

from pydub import playback

music = AudioSegment.from_wav('song.wav')

playback.play(music)

67

Pydub AudioSegment Editing
To edit music with pydub, you use slicing, like how you edit strings and lists.

The AudioSegment represents the song in millisecond segments. So to get the first
second of a song, you'd use:

song[:1000] # first second

Or to get only the first half of a song, you'd use:

song[:len(song)//2] # first half

68

Pydub AudioSegment Editing
You can also change the volume of a song by adding or subtracting
decibels from it.

This works like NumPy arrays – you can add or subtract a single number
from the segment, and it will propagate across all the values.

song – 20 # make quieter

69

Pydub AudioSegment Functions
There are a bunch of cool functions already implemented for you. For example, you can
implement fading, or speed up a song or remove silence.

Note that these functions may take a little while to run- be patient! You can always save the
result in a new file, then play that file directly.

music = music.fade_in(10*1000)

music = music.speedup(2)

music = music.strip_silence()

music.export("new_song.wav", format="wav")

70

Pydub and MP3 Files
If you want to edit more popular music file formats (like mp3 files), you've got two
options.

One: try to install ffmpeg, a non-python library that supports a wide range of audio
formats. Unfortunately, you can't do this with pip. Here's instructions from Pydub on
how to install: https://github.com/jiaaro/pydub#getting-ffmpeg-set-up

Two: convert your MP3 file into a WAV file using a different audio application. One
option is VLC, which is available for free. You can convert files by going to Media >
Convert/Save, but you'll need to set up a new profile format for WAV. Here's
instructions for how to do that: https://promincproductions.com/blog/export-wav-
audio-file-from-any-video-clip-with-vlc/

71

https://github.com/jiaaro/pydub#getting-ffmpeg-set-up
https://promincproductions.com/blog/export-wav-audio-file-from-any-video-clip-with-vlc/
https://promincproductions.com/blog/export-wav-audio-file-from-any-video-clip-with-vlc/

Pygame
Pygame is, like Tkinter, a library that lets you make graphical applications.
However, Pygame is specifically designed to create games. It has better
support for sprites and collision detection than tkinter.

Website: https://www.pygame.org/news

Install:

pip install pygame

72

https://www.pygame.org/news

Pygame Essentials
The core difference between coding a game versus other kinds of coding is
that the game needs to be interactive, which means that it needs to keep
running continuously while waiting for input from the user.

Pygame supports this through a game loop. This is just a while loop that
loops until you tell it to stop. (We'll cover loops in Week 3 of the class).

Inside that loop, the game constantly checks for input from the user,
responds to any inputs it has received, and generally keeps the game
moving.

73

Pygame Window
Let's say we want to open up a simple window.
We can do that with the set_mode method,
but that by itself isn't enough.

We also want to be able to close that window
by pressing the x button. So we need to
constantly check whether the user has asked
to quit inside the game loop.

We can do this by checking all the events that
were received by the game system. When a
QUIT event happens, exit the loop, then call
the built-in function exit() to exit the window
as well.

import pygame

pygame.init()

playing = True

width, height = 500, 500
screen = pygame.display.set_mode([width, height])

while playing:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 playing = False

exit()

74

Pygame Demo
This isn't a game yet, though- it's just a window.

Let's make a simple clicker game. The user can click on an image on the
screen; whenever they do, their score goes up by one.

This demo will go over some of the core components of Pygame, but
there's a lot more it doesn't cover! You can do quite a bit with this library.

75

Pygame Images
The tricky thing here is that Python needs to refresh
the window every time the game loop runs, just in
case something changes. So you should actually draw
the image inside the game loop.

However, you only want the image to show up once.
Before you draw anything, fill the background of the
screen with a solid color using screen.fill, to erase
anything drawn before.

First, load the image using the pygame.image.load
method. Then set up a rectangle that corresponds to
the image in the position where you want to show
up. Use get_width and get_height on the image to
make sure it is centered. Finally, use screen.blit to
actually draw the image in the game loop.

import pygame

pygame.init()

playing = True
black = pygame.Color(0, 0, 0)
width, height = 500, 500
screen = pygame.display.set_mode([width, height])

icon = pygame.image.load("ball.gif")
icon_rect = pygame.Rect(250 - icon.get_width()/2,
 250 - icon.get_height()/2,
 250 + icon.get_width()/2,
 250 + icon.get_height()/2)

while playing:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 playing = False

 screen.fill(black)
 screen.blit(icon, icon_rect)
 pygame.display.flip()

exit()

76

Pygame Fonts
You should also set up a score in text. The
score itself can just be a variable, and the text
can be displayed above the image.

Set up a font first; then render text based on
that font. Then the text can just be displayed
with blit.

This time, let's specifically provide a
coordinate pair with the location where we
want the text to show up.

import pygame

pygame.init()

...

score = 0

white = pygame.Color(255, 255, 255)
font = pygame.font.SysFont("Arial", 32)
score_text = font.render("Score: " + str(score),
 False, white)

while playing:
 ...

 screen.fill(black)
 screen.blit(icon, icon_rect)
 screen.blit(score_text, [250 –
 score_text.get_width() / 2, 100])
 pygame.display.flip()

exit()

77

Pygame Collisions
Now we need to detect whether the image has been
clicked on. The easiest way to do this is with collision
detection.

Luckily, this is something that Pygame does really well! If
you can capture where the user clicked on the screen, you
can easily detect whether that pixel location collided with
the image's icon.

To capture the clicked location, check for a new event type
- a MouseButtonUp event. This will happen when the user
has clicked on the screen and releases the button. When
this happens, use the pos property of the event to get the
mouse's current position.

Then call the method collidepoint on the image's rectangle
and the point to see if they collide. If they do, update the
score.

import pygame

pygame.init()

...

while playing:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 playing = False
 elif event.type == pygame.MOUSEBUTTONUP:
 if icon_rect.collidepoint(event.pos):
 score += 1
 ...

78

Pygame Collisions
This is a good start, but it isn't
enough by itself. We've updated
the score, but we haven't updated
the score text, so the change will
never be registered on the screen.

You need to update the score_text
variable to show the new score. For
now, let's just copy and paste the
line we used before. In the future,
though, this would be better placed
in a helper function.

And with that, the game works!

import pygame

pygame.init()

...

while playing:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 playing = False
 elif event.type == pygame.MOUSEBUTTONUP:
 if icon_rect.collidepoint(event.pos):
 score += 1
 score_text = font.render("Score: " +
 str(score), False,
 white)
 ...

79

Game Programming
This approach works, and it's fine if you're not planning to develop the game any
further, but if you do plan to extend what the game can do, you should restructure the
code a bit.

Object-oriented approaches are really useful for game design. Putting all your major
game components into classes helps to organize your code and makes it much easier to
manage the core game loop.

This kind of approach also makes it easier to add new features, as it's more clear where
the code should go.

Try revisiting this idea after we cover OOP!

80

Vpython
Vpython is a nice library for creating and interacting with 3D graphics. It's
mainly aimed towards scientific simulations, though; for more game-like
3D graphcs, you'll probably want to use a game engine (like Unity, or
Unreal).

Website: https://vpython.org/

pip install vpython

81

https://vpython.org/

Vpython 3D Objects
Programming in Vpython is mostly similar to programming
in Tkinter. The main difference is that you construct 3D
objects like spheres and points instead of 2D shapes.

from vpython import *

ball = sphere(pos=vector(0, 0, 0),

 radius=100, color=color.blue)

pointer = arrow(pos=vector(0, 150, 0),

 axis=vector(100, 0, 0),

 color=color.yellow)

When you run the script, it opens a browser window to
render the graphics.

82

Vpython 3D Object Manipulation
You can then program in your own physics to
interact with the 3D objects or make them move.
Usually this is done by setting up an infinite while
loop.

The rate function tells the while loop how long to
wait between iterations. This makes it possible to
actually see the animation move.

For example, by changing the vector position of the
ball, we can make it move back and forth. We can
even have it change directions by changing the
delta movement.

Changing the axis of the arrow makes it point in the
same direction as the ball is moving.

move = vector(10, 0, 0)

while True:

 rate(100)

 ball.pos = ball.pos + move

 if ball.pos.x >= 300 or \

 ball.pos.x <= -300:

 move = vector(-move.x, 0, 0)

 pointer.axis = -pointer.axis

83

	Slide 1: Advanced Programming #1: Python Modules
	Slide 2: Learning Goals
	Slide 3: Python Libraries
	Slide 4: Using External Modules
	Slide 5: Finding Useful Modules
	Slide 6: Install External Modules with pip
	Slide 7: Running pip
	Slide 8: Using an Installed Module
	Slide 9: Learning how a Module Works
	Slide 10: Reminder: always cite others' work!
	Slide 11: Module Index
	Slide 12: Data Analysis External Modules
	Slide 13: SciPy Collection
	Slide 14: NumPy
	Slide 15: NumPy Arrays
	Slide 16: NumPy Arrays – Operations
	Slide 17: NumPy Arrays - Indexing
	Slide 18: NumPy Functions
	Slide 19: SciPy
	Slide 20: SciPy Functions
	Slide 21: Matplotlib
	Slide 22: Draw Visualizations on the Plot
	Slide 23: Add Visualizations with Methods
	Slide 24: Visualization Methods have Keyword Args
	Slide 25: Matplotlib Approaches
	Slide 26: Fig and Ax
	Slide 27: Pandas
	Slide 28: Pandas DataFrames
	Slide 29: Pandas DataFrame Columns
	Slide 30: Pandas DataFrame Indexing
	Slide 31: Pandas Functions
	Slide 32: Machine Learning External Modules
	Slide 33: Machine Learning Overview
	Slide 34: scikit-learn
	Slide 35: Understanding Algorithms
	Slide 36: scikit-learn Demo
	Slide 37: Loading Data from a File
	Slide 38: Running the Algorithm
	Slide 39: scikit-learn Model Properties
	Slide 40: scikit-learn Model Properties
	Slide 41: scikit-learn Model Functions
	Slide 42: OpenCV
	Slide 43: OpenCV Example
	Slide 44: OpenCV Example
	Slide 45: nltk
	Slide 46: nltk Functions
	Slide 47: nltk Functions
	Slide 48: Web Development External Modules
	Slide 49: Regular Web Design
	Slide 50: Django
	Slide 51: Django Principles
	Slide 52: Programming with Django
	Slide 53: Flask
	Slide 54: Programming in Flask
	Slide 55: Beautiful Soup
	Slide 56: Parse HTML as Tags
	Slide 57: Load HTML with urllib
	Slide 58: BeautifulSoup Navigation
	Slide 59: More BeautifulSoup Navigation
	Slide 60: BeautifulSoup Functions
	Slide 61: BeautifulSoup Attributes
	Slide 62: Creative External Modules
	Slide 63: Pillow: Python Imaging Library
	Slide 64: Pillow Images
	Slide 65: Pillow Image Functions
	Slide 66: Pydub
	Slide 67: Pydub AudioSegments
	Slide 68: Pydub AudioSegment Editing
	Slide 69: Pydub AudioSegment Editing
	Slide 70: Pydub AudioSegment Functions
	Slide 71: Pydub and MP3 Files
	Slide 72: Pygame
	Slide 73: Pygame Essentials
	Slide 74: Pygame Window
	Slide 75: Pygame Demo
	Slide 76: Pygame Images
	Slide 77: Pygame Fonts
	Slide 78: Pygame Collisions
	Slide 79: Pygame Collisions
	Slide 80: Game Programming
	Slide 81: Vpython
	Slide 82: Vpython 3D Objects
	Slide 83: Vpython 3D Object Manipulation

