
#2-1: Booleans and
Conditionals
CS SCHOLARS – PROGRAMMING

Course Logistics
Hw1 feedback has been released!

Let's go over how to view your feedback on Gradescope.

2

Notes from Hw1
Be specific! [#1]: when communicating an algorithm, make sure you're specific about what the
user should do. You want to make sure there's no room for misinterpretation!

Variable Assignments & Updating [#2]: Recall that variables can change! When we use a
variable assignment we can change a pre-existing variable to a new value. However, we must
actually assign the variable (with =) for the value held in it to change.

print Returned Value [#3]: print's returned value is always None, not the value it displays! The
action of displaying something is a side effect.

Function definition vs. call [#4]: note that there is a difference between defining a function vs.
calling a function. Function definitions have parameters and return statements and are abstract;
function calls have arguments and returned values and are specific.

3

Awesome Graphics!

4

More Awesome Graphics!

5

Learning Goals
Use logical operators on Booleans to compute whether an expression is
True or False

Use conditionals when reading and writing algorithms that make choices
based on data

Use nesting of conditionals and function definitions to create complex
control flow

6

Logical Operators

7

Booleans are values that can be True or False
In week 1 we learned about the Boolean type, which can be one of two
values: True or False.

Until now we've made Boolean values by comparing different values, such
as:

x < 5

s == "Hello"

7 >= 2

8

Logical Operations Combine Booleans
We aren't limited to only evaluating a single Boolean comparison! We can
combine Boolean values using logical operations. We'll learn about three
– and, or, and not.

Combining Boolean values will let us check complex requirements while
running code.

9

and Operation Checks Both
The and operation takes two Boolean
values and evaluates to True if both
values are True. In other words, it
evaluates to False if either value is
False.

We use and when we want to require
that both conditions be met at the
same time.

Example:

(x >= 0) and (x < 10)

a b a and b

True True True

True False False

False True False

False False False

10

or Operation Checks Either
The or operation takes two Boolean
values and evaluates to True if
either value is True. In other words,
it only evaluates to False if both
values are False.

We use or when there are multiple
valid conditions to choose from.

Example:

a b a or b

True True True

True False True

False True True

False False False

11

(day == "Saturday") or (day == "Sunday")

not Operation Reverses Result
Finally, the not operation takes a single
Boolean value and switches it to the
opposite value (negates it). not True
becomes False, and not False
becomes True.

We use not to switch the result of a
Boolean expression. For example, not
(x < 5) is the same as x >= 5.

Example:

not (x == 0)

a not a

True False

False True

12

Activity: Guess the Result
If x = 10, what will each of the following expressions evaluate to?

x < 25 and x > 15

x < 25 or x > 15

not (x > 5 and x < 10)

(x > 5) or ((x**2 > 50) and (x == 20))

((x > 5) or (x**2 > 50)) and (x == 20)

13

Conditionals

14

Conditionals Make Decisions
With Booleans, we can make a new type of code called a conditional.
Conditionals are another form of a control structure – they let us change
the direction of the code based on the value that we provide.

To write a conditional (if statement), we use the following structure:

if <BooleanExpression>:

 <bodyIfTrue>

Note that, like a function definition, the top line of the if statement ends
with a colon, and the body of the if statement is indented. The body must
have at least one line and can have as many more lines as it needs.

15

Flow Charts Show Code Choices
We'll use a flow chart to demonstrate how
Python executes an if statement based on
the values provided.

print("hello")

if x < 10:

 print("wahoo!")

print("goodbye")

wahoo! is only printed if x is less than 10.
But hello and goodbye are always printed.

16

print
'hello'

print
'wahoo!'

print
'goodbye'

if x < 10True False

Example: Print Number of Digits
For example, we could use the following code to print whether a number
has one digit or more than one digit:

x = 24

if -10 < x and x < 10:

 print("Only one digit")

if x <= -10 or x >= 10:

 print("More than one digit")

17

Else Clauses Allow Alternatives
Sometimes we want a program to do one of two alternative actions based
on the condition. In this case, instead of writing two if statements, we can
write a single if statement and add an else.

The else is executed when the Boolean expression is False.

if <BooleanExpression>:

 <bodyIfTrue>

else:

 <bodyIfFalse>

18

}
}

if clause

else clause

Updated Flow Chart Example
print("hello")

if x < 10:

 print("wahoo!")

else:

 print("ruh roh")

print("goodbye")

19

print
'hello'

print
'wahoo!'

print
'goodbye'

if x < 10

print
'ruh roh'

True False

Revised Example: Print Number of Digits
Using an else statement makes our earlier code much easier to write and
understand!

x = 24

if -10 < x and x < 10:

 print("Only one digit")

else:

 print("More than one digit")

20

Activity: Conditional Prediction
Prediction Exercise: What will the following code print?

x = 5
if x > 10:
 print("Up high!")
else:
 print("Down low!")

Question: Can we change the program state to print the other string instead?

Question: Can we change the state to make the if/else statement print out both
statements?

21

Elif Implements Multiple Alternatives
Finally, we can use elif statements to add alternatives with their own
conditions to if statements. An elif is like an if, except that it is checked only
if all previous conditions evaluate to False.

if <BooleanExpressionA>:

 <bodyIfATrue>

elif <BooleanExpressionB>:

 <bodyIfAFalseAndBTrue>

else:

 <bodyIfBothFalse>

22

Updated Flow Chart Example
print("hello")

if x < 10:

 print("wahoo!")

elif x <= 99:

 print("meh")

else:

 print("ruh roh")

print("goodbye")

23

print
'hello'

print
'wahoo!'

print
'goodbye'

print
'ruh roh'

True
False

True False

print
'meh'

if x < 10

if x <= 99

Conditional Statements Join Clauses Together
A conditional statement is a joined group of if, elif, and else. All conditional
statements have:
◦ Exactly one if clause
◦ Followed by zero or more elif clauses
◦ Followed by zero or one else clause(s)

These joined clauses can be considered a single control structure. Only one
clause will have its body executed.

Note that it's impossible to have an else or elif clause by itself, as it would
have no condition to be the alternative to. That means we always need an if at
the beginning.

24

Example: grade calculator
Let's write a few lines of code that takes a grade as a number, then prints
the letter grade that corresponds to that number grade.

90+ is an A, 80-90 is a B, 70-80 is a C, 60-70 is a D, and below 60 is an R.

25

Activity: calculate late fee
You do: write a few lines of code that determine whether a library book is
late. If it isn't, print out a message saying that everything is fine; if it is
late, print out the late fee.

Start with a few variables. maxDays is the number of days a book is
allowed to be checked out; set it to 30. dailyFee is the fine per day once
a book is late; set it to 10 (10 cents). daysPassed can then be the
number of days that you've had the book checked out. Try changing that
variable to different values as you run the code to see what happens!

26

Short-Circuit Evaluation
When Python evaluates a logical expression, it acts lazily. It only evaluates the
second part if it needs to. This is called short-circuit evaluation.

When checking x and y, if x is False the expression can never be True.
Therefore, Python doesn't even evaluate y.

When checking x or y, if x is True the expression can never be False. Python
doesn't evaluate y.

This is a handy method for keeping errors from happening. For example:

if type(x) == type(y) and x < y:

 print("Smaller:", x)

27

Activity: Kahoot!
Let's do a quick Kahoot to practice evaluating Boolean expressions that
may or may not use short-circuit evaluation.

Join the Kahoot here: kahoot.it

28

kahoot.it

Nesting Control Structures

29

Nesting Creates More Complex Control Flow
Now that we've learned more, we can put if statements inside of if
statements.

In general, we'll be able to nest control structures inside of other control
structures. This can currently be done with if statements and function
definitions.

In program syntax, we demonstrate that a control structure is nested by
indenting the code so that it's in the outer control structure's body.

30

Example: Car rental program
Consider code that determines if a person can rent a
car based on their age (are they at least 26) and
whether they have a driver's license.

We can use one if statement to check their age,
then a second (nested inside the first) to check the
license. We'll only print 'Rental Approved' if both if
conditions evaluate to True.

if age >= 26:
 if license == True:
 print("Rental Approved")
 else:
 print("Rental Denied")
else:
 print("Rental Denied")

31

print
'Rental Approved'

print
'Rental Denied'

print
'Rental Denied'

True False

True Falseif license == True

if age >= 26

Note that each else is paired with
the if at the same indentation level.

Alternative Car Rental Code
In the code below, we accomplish the
same result with the and operation.

This won't always work, though – it
depends on how many different results
you want.

if age >= 26 and license == True:

 print("Rental Approved")

else:

 print("Rental Denied")

32

print
'Rental Approved'

print
'Rental Denied'

True False
if age >= 26 and
license == True

Nesting Conditionals in Functions
When we nest a conditional inside a function definition we can return values
early instead of only returning on the last line. Returning early is fine as long as
we ensure every possible path the function can take will eventually return a
value.

A function will always end as soon as it reaches a return statement, even if
more lines of code follow it. For example, the following function will not crash
when n is zero.

def findAverage(total, n):
 if n <= 0:
 return -1 # error code
 return total / n

33

Exercise: Convert Flow Chart to Code

34

print
"It's a fish"

print
"It's a dog"

print
"It's a cat"

True

False

print
"What a good pet!"

if numLegs != 4

if wagsTail == True

False

True

Learning Goals
Use logical operators on Booleans to compute whether an expression is True or
False

Use conditionals when reading and writing algorithms that make choices based
on data

Use nesting of conditionals and function definitions to create complex control
flow

Recognize the different types of errors that can be raised when you run Python
code

35

	Slide 1: #2-1: Booleans and Conditionals
	Slide 2: Course Logistics
	Slide 3: Notes from Hw1
	Slide 4: Awesome Graphics!
	Slide 5: More Awesome Graphics!
	Slide 6: Learning Goals
	Slide 7: Logical Operators
	Slide 8: Booleans are values that can be True or False
	Slide 9: Logical Operations Combine Booleans
	Slide 10: and Operation Checks Both
	Slide 11: or Operation Checks Either
	Slide 12: not Operation Reverses Result
	Slide 13: Activity: Guess the Result
	Slide 14: Conditionals
	Slide 15: Conditionals Make Decisions
	Slide 16: Flow Charts Show Code Choices
	Slide 17: Example: Print Number of Digits
	Slide 18: Else Clauses Allow Alternatives
	Slide 19: Updated Flow Chart Example
	Slide 20: Revised Example: Print Number of Digits
	Slide 21: Activity: Conditional Prediction
	Slide 22: Elif Implements Multiple Alternatives
	Slide 23: Updated Flow Chart Example
	Slide 24: Conditional Statements Join Clauses Together
	Slide 25: Example: grade calculator
	Slide 26: Activity: calculate late fee
	Slide 27: Short-Circuit Evaluation
	Slide 28: Activity: Kahoot!
	Slide 29: Nesting Control Structures
	Slide 30: Nesting Creates More Complex Control Flow
	Slide 31: Example: Car rental program
	Slide 32: Alternative Car Rental Code
	Slide 33: Nesting Conditionals in Functions
	Slide 34: Exercise: Convert Flow Chart to Code
	Slide 35: Learning Goals

