
#3-2: For Loops
CS SCHOLARS – PROGRAMMING

Learning Goals
Use for loops when reading and writing algorithms to repeat actions a
specified number of times

Recognize which numbers will be produced by a range expression

Translate algorithms from control flow charts to Python code

Use nesting of statements to create complex control flow

2

For Loops

3

For Loops Implement Repeated Actions
We've learned how to use while loops and loop control variables to iterate until a
certain condition is met. When that loop control is straightforward
(increase/decrease a number until it reaches a certain limit), we can use a more
standardized structure instead.

A for loop over a range tells the program exactly how many times to repeat an
action. The loop control variable is updated by the loop itself!

for <loopVariable> in range(<maxNumPlusOne>):

 <loopBody>

4

Example: Print 1 to 10
Previously we showed how to print the numbers from 1 to 10 with a while
loop. Doing this with a for loop is super easy! The loop control variable
starts at 0 and automatically increases by 1 each loop iteration.

for i in range(10):

 print(i+1) # starts at 0 and ends at 9, so add 1

5

While Loops vs. For Loops
To sum the numbers from 0 to n in a while loop, we'd write
the following:

n = 10

i = 0

result = 0

while i <= n:

 result = result + i

 i = i + 1

print(result)

In a for loop using a range expression, we'd write the
following:

n = 10

result = 0

for i in range(n + 1):

 result = result + i

print(result)

We have to use n + 1 because range goes up to but not
including the given number. It's like writing

while i < n + 1:

6

For Loop Flow Chart
Unlike while loops, we don't initialize or
update the loop control variable. The for loop
does those actions automatically.

We show actions done by the range function
with a dotted outline here, because they're
implicit, not written directly.

n = 10

result = 0

for i in range(n + 1):

 result = result + i

print(result)

7

i = 0

if i < n+1

result = result + i

i = i + 1

True False

result = 0

print(result)

loop body

n = 10

Activity: Translate the
Flow Chart

You do: given the flow chart to the
right, write a program that matches
the flow chart. Use a for loop, not a
while loop.

What does the program print?

8

i = 0

if i <= 19

x = i - x

i = i + 1

True False

x = 0

print(x)

Range

9

range Generates Loop Variable Values
When we run for i in range(10), range(10) generates the consecutive
values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 for the loop control variable, one value each
iteration.

We can also give range two arguments, a start and an end value. The loop
control variable begins with the start value, is incremented by 1 each iteration,
and goes up to but not including the end value.

The following code would generate the numbers 3, 4, 5, 6, and 7.

for i in range(3, 8):

 print(i)

10

range Manages the Loop Control Variable
Because range generates numbers this way, you can't update the loop control
variable in the loop body.

If you try to change the loop control variable, it will revert back to the next
expected value on the following iteration.

for i in range(10):

 print(i)

 i = i + 2 # should skip two ahead, but does not

11

range Also Has a Step
If we use three arguments in the range function, the last argument is the step of
the range (how much the loop control variable should change in each iteration).
The following example would print the odd numbers from 1 to 11, because it
updates i by 2 each iteration.

for i in range(1, 12, 2):
 print(i)

Any looping over numbers we can do in a for loop can also be done in a while
loop. In a while loop, the above code could be written as:

i = 1
while i < 12:
 print(i)
 i = i + 2

12

range Example: Countdown
Let's write a program that counts backwards from 10 to 1, using range.

for i in range(10, 0, -1):

 print(i)

Note that i has to end at 0 in order to make 1 the last number that is
printed.

13

Activity: Predict the Printed Values
In this Kahoot quiz, predict what the loop will print based on its range.

Link: https://kahoot.it/

14

https://kahoot.it/

Coding with For Loops

15

Problem Solving with For Loops
Problem solving with for loops is similar to problem solving with while loops. You need
to identify the loop control variable, then find the correct start, end, and step for it.

Example: how would you create a program that produces the pattern

"10-11-12-13-" using a for loop?

s = ""

for i in range(10, 14):

 s = s + str(i) + "-"

print(s)

16

Nesting with For Loops
We can also nest for loops in functions
and conditionals in for loops, just like
with while loops.

For example, we can determine
whether or not a number is prime using
a for loop over all the number's
possible factors (from 2 up to but not
including the number itself).

Make sure to also check that the
number is positive and not 1!

def isPrime(num):

 if num < 2:

 return False

 for factor in range(2, num):

 if num % factor == 0:

 return False

 return True

17

Activity: write printPrimes
You do: write the function printPrimes(x) that prints the prime
numbers between 1 and x.

You'll want to call the function isPrime(num) that we just implemented
in your own function. Think about what values you need to call it on to
print all the primes.

18

Nested Loops

19

Nesting Loops
Importantly, we can also nest loops inside of loops!

We mostly do this with for loops, and mostly when we want to loop over multiple
dimensions.

for <loopVar1> in range(<endNum1>):

 for <loopVar2> in range(<endNum2>):

 <bothLoopsBody>

 <justOuterLoopBody>

In nested loops, the inner loop is repeated every time the outer loop takes a
step.

20

Example: Coordinate Plane with Nested Loops
Suppose we want to print a multiplication table from 1x1 to 3x2.

for x in range(1, 4):

 for y in range(1, 3):

 print(x, "*", y, "=", x * y)

Note that the inner loop belongs to the body of the outer loop. Every
iteration of y happens anew in each iteration of x.

21

Tracing Nested Loops
We can use code tracing to find the
values at each iteration of the loops.

for x in range(1, 4):

 for y in range(1, 3):

 print(x, "*", y, "=", x * y)

Iteration x y x*y

1 1 1 1

2 1 2 2

3 2 1 2

4 2 2 4

5 3 1 3

6 3 2 6

22

Activity: Trace the Nested Loop
You do: what will the following loop print? Try using a table to keep track
of the two loop control variables. For each pair determine whether or not
it meets the condition.

for x in range(2, 6):

 for y in range(10, 15):

 if y % x == 0:

 print(x, "divides", y)

23

Example: drawGrid(canvas, size)
Let's write a function that draws a
grid using Tkinter.

Instead of repeating calls of
create_rectangle, we'll use
nested for loops (along with math
and logic) to determine where to
draw each square.

24

Sidebar: Function Call Canvas
Let's use a bit of code to
generate a new canvas in a
function call.

We just need to add in our
own call to our drawing
function in the middle!

import tkinter

def runDrawGrid():

 root = tkinter.Tk()

 canvas = tkinter.Canvas(root, width=400,

 height=400)

 canvas.configure(bd=0,

 highlightthickness=0)

 canvas.pack()

 drawGrid(canvas, 4) # your call here!

 root.mainloop()

25

First, Draw a Row
Let's start simple by drawing a row of cells
instead of a whole grid. Note that a row
repeats cells over the X axis. Each square will
be 50 x 50 pixels in size.

Each square's top and bottom will be 0 and 50.
The first square's left and right are 0 and 50,
second are 50 and 100, etc.

We'll want to loop over all possible columns
from 0 to gridSize-1. We'll then draw a
square for each.

Discuss: How can we calculate a square's left
and right positions abstractly using only its
column number?

Desired outcome:

26

sq 0 sq 1 sq 2 sq 3

y=0

y=50

x=0 x=50 x=100 x=150 x=200

Loop Over Columns
The first square starts at x coordinate 0;
the next is one square over, so it starts
at 50. The third square has two squares
before it, so it starts at 2 * 50; etc..

If we number the squares from 0 to 4,
each square's left side starts at
col * 50, where 50 is the size of the
square. Add 50 to that coordinate to
get the right side.

def drawGrid(canvas, size):

 for col in range(size):

 left = col * 50

 right = left + 50

 canvas.create_rectangle(left, 0,

 right, 50)

27

Draw Multiple Rows for a Grid
Now we just need to repeat the logic
that drew the first row. Take the code
from before and put it inside an outer
loop. Note that the outer loop
represents a cell's row, while the inner
loop represents a cell's column.

Calculate the top of each cell based on
the value's row, using the same logic
that found the column coordinates.

def drawGrid(canvas, size):

 for row in range(size):

 top = row * 50

 bottom = top + 50

 for col in range(size):

 left = col * 50

 right = left + 50

 canvas.create_rectangle(left, top,

 right, bottom)

28

Add Stripes with Conditionals
We can make the grid more exciting
by adding colors to the cells, to draw
stripes.

Stripes alternate by row or by
column. Check whether the
row/column is odd or even using the
mod operator.

if row % 2 == 0:

 color = "red"

else:

 color = "green"

canvas.create_rectangle(left, top,

 right, bottom,

 fill=color)

29

Activity: Vertical Stripes
You do: update the drawGrid code we just wrote to draw three columns
of stripes instead of two rows.

What needs to change?

30

Learning Goals
Use for loops when reading and writing algorithms to repeat actions a
specified number of times

Recognize which numbers will be produced by a range expression

Translate algorithms from control flow charts to Python code

Use nesting of statements to create complex control flow

31

	Slide 1: #3-2: For Loops
	Slide 2: Learning Goals
	Slide 3: For Loops
	Slide 4: For Loops Implement Repeated Actions
	Slide 5: Example: Print 1 to 10
	Slide 6: While Loops vs. For Loops
	Slide 7: For Loop Flow Chart
	Slide 8: Activity: Translate the Flow Chart
	Slide 9: Range
	Slide 10: range Generates Loop Variable Values
	Slide 11: range Manages the Loop Control Variable
	Slide 12: range Also Has a Step
	Slide 13: range Example: Countdown
	Slide 14: Activity: Predict the Printed Values
	Slide 15: Coding with For Loops
	Slide 16: Problem Solving with For Loops
	Slide 17: Nesting with For Loops
	Slide 18: Activity: write printPrimes
	Slide 19: Nested Loops
	Slide 20: Nesting Loops
	Slide 21: Example: Coordinate Plane with Nested Loops
	Slide 22: Tracing Nested Loops
	Slide 23: Activity: Trace the Nested Loop
	Slide 24: Example: drawGrid(canvas, size)
	Slide 25: Sidebar: Function Call Canvas
	Slide 26: First, Draw a Row
	Slide 27: Loop Over Columns
	Slide 28: Draw Multiple Rows for a Grid
	Slide 29: Add Stripes with Conditionals
	Slide 30: Activity: Vertical Stripes
	Slide 31: Learning Goals

