\#3-2: For Loops
CS SCHOLARS - PROGRAMMING

Learning Goals

Use for loops when reading and writing algorithms to repeat actions a specified number of times

Recognize which numbers will be produced by a range expression

Translate algorithms from control flow charts to Python code

Use nesting of statements to create complex control flow

For Loops

For Loops Implement Repeated Actions

We've learned how to use while loops and loop control variables to iterate until a certain condition is met. When that loop control is straightforward (increase/decrease a number until it reaches a certain limit), we can use a more standardized structure instead.

A for loop over a range tells the program exactly how many times to repeat an action. The loop control variable is updated by the loop itself!
for <LoopVariable> in range(<maxNumPLusOne>):
<LoopBody>

Example: Print 1 to 10

Previously we showed how to print the numbers from 1 to 10 with a while loop. Doing this with a for loop is super easy! The loop control variable starts at 0 and automatically increases by 1 each loop iteration.
for i in range(10):

$$
\text { print(i+1) \# starts at } 0 \text { and ends at } 9 \text {, so add } 1
$$

While Loops vs. For Loops

To sum the numbers from 0 to n in a while loop, we'd write the following:
$\mathrm{n}=10$
i = 0
result = 0
while i <= n:
result = result + i
i = i + 1
print(result)

In a for loop using a range expression, we'd write the following:

```
\(\mathrm{n}=10\)
result = 0
for \(i\) in range( \(n+1\) ):
    result \(=\) result \(+i\)
print(result)
```

We have to use $\mathrm{n}+1$ because range goes up to but not including the given number. It's like writing

```
while i < n + 1:
```

$n=10$
\downarrow

For Loop Flow Chart

Unlike while loops, we don't initialize or update the loop control variable. The for loop does those actions automatically.

We show actions done by the range function with a dotted outline here, because they're implicit, not written directly.
$\mathrm{n}=10$
result = 0
for i in range(n + 1):
result = result + i
print(result)

Activity: Translate the Flow Chart
 e

You do: given the flow chart to the right, write a program that matches the flow chart. Use a for loop, not a while loop.

What does the program print?

Range

range Generates Loop Variable Values

When we run for i in range(10), range(10) generates the consecutive values $0,1,2,3,4,5,6,7,8,9$ for the loop control variable, one value each iteration.

We can also give range two arguments, a start and an end value. The loop control variable begins with the start value, is incremented by 1 each iteration, and goes up to but not including the end value.

The following code would generate the numbers $3,4,5,6$, and 7 .

```
for i in range(3, 8):
    print(i)
```


range Manages the Loop Control Variable

Because range generates numbers this way, you can't update the loop control variable in the loop body.

If you try to change the loop control variable, it will revert back to the next expected value on the following iteration.

```
for i in range(10):
    print(i)
    i = i + 2 # should skip two ahead, but does not
```


range Also Has a Step

If we use three arguments in the range function, the last argument is the step of the range (how much the loop contro variable should change in each iteration). The following example would print the odd numbers from 1 to 11, because it updates i by 2 each iteration.

```
for i in range(1, 12, 2):
    print(i)
```

Any looping over numbers we can do in a for loop can also be done in a while loop. In a while loop, the above code could be written as:

```
i = 1
while i < 12:
    print(i)
    i = i + 2
```


range Example: Countdown

Let's write a program that counts backwards from 10 to 1, using range.

```
for i in range(10, 0, -1):
    print(i)
```

Note that i has to end at 0 in order to make 1 the last number that is printed.

Activity: Predict the Printed Values

In this Kahoot quiz, predict what the loop will print based on its range.

Link: https://kahoot.it/

Coding with For Loops

Problem Solving with For Loops

Problem solving with for loops is similar to problem solving with while loops. You need to identify the loop control variable, then find the correct start, end, and step for it.

Example: how would you create a program that produces the pattern
"10-11-12-13-" using a for loop?
s = ""
for i in range(10, 14):
$s=s+s t r(i)+"-"$
print(s)

Nesting with For Loops

We can also nest for loops in functions and conditionals in for loops, just like with while loops.

For example, we can determine whether or not a number is prime using a for loop over all the number's possible factors (from 2 up to but not including the number itself).

```
def isPrime(num):
    if num < 2:
        return False
    for factor in range(2, num):
        if num % factor == 0:
        return False
    return True
```

Make sure to also check that the number is positive and not 1 !

Activity: write printPrimes

You do: write the function printPrimes (x) that prints the prime numbers between 1 and x.

You'll want to call the function isPrime(num) that we just implemented in your own function. Think about what values you need to call it on to print all the primes.

Nested Loops

Nesting Loops

Importantly, we can also nest loops inside of loops!
We mostly do this with for loops, and mostly when we want to loop over multiple dimensions.

```
for <LoopVar1> in range(<endNum1>):
    for <loopVar2> in range(<endNum2>):
        <bothLoopsBody>
    <justOuterLoopBody>
```

In nested loops, the inner loop is repeated every time the outer loop takes a step.

Example: Coordinate Plane with Nested Loops

Suppose we want to print a multiplication table from 1×1 to 3×2.

```
for x in range(1, 4):
    for y in range(1, 3):
    print(x, "*", y, "=", x * y)
```

Note that the inner loop belongs to the body of the outer loop. Every iteration of y happens anew in each iteration of x .

Tracing Nested Loops

We can use code tracing to find the values at each iteration of the loops.

```
for x in range(1, 4):
    for y in range(1, 3):
        print(x, "*", y, "=", x * y)
```

Iteration	x	y	$x^{*} y$
1	1	1	1
2	1	2	2
3	2	1	2
4	2	2	4
5	3	1	3
6	3	2	6

Activity: Trace the Nested Loop

You do: what will the following loop print? Try using a table to keep track of the two loop control variables. For each pair determine whether or not it meets the condition.

```
for x in range(2, 6):
    for y in range(10, 15):
    if y % x == 0:
        print(x, "divides", y)
```


Example: drawGrid(canvas, size)

Let's write a function that draws a grid using Tkinter.

Instead of repeating calls of create_rectangle, we'll use nested for loops (along with math and logic) to determine where to draw each square.

Sidebar: Function Call Canvas

Let's use a bit of code to generate a new canvas in a function call.

We just need to add in our own call to our drawing function in the middle!

```
import tkinter
def runDrawGrid():
    root = tkinter.Tk()
    canvas = tkinter.Canvas(root, width=400,
                                    height=400)
    canvas.configure(bd=0,
                                    highlightthickness=0)
    canvas.pack()
    drawGrid(canvas, 4) # your call here!
    root.mainloop()
```


First, Draw a Row

Let's start simple by drawing a row of cells instead of a whole grid. Note that a row repeats cells over the X axis. Each square will be 50×50 pixels in size.

Each square's top and bottom will be 0 and 50. The first square's left and right are 0 and 50, second are 50 and 100, etc.

We'll want to loop over all possible columns from 0 to gridSize-1. We'll then draw a square for each.

Desired outcome:

Discuss: How can we calculate a square's left and right positions abstractly using only its column number?

Loop Over Columns

The first square starts at x coordinate 0 ; the next is one square over, so it starts at 50 . The third square has two squares before it, so it starts at $2 * 50$; etc..

If we number the squares from 0 to 4 , each square's left side starts at col * 50 , where 50 is the size of the square. Add 50 to that coordinate to get the right side.

```
def drawGrid(canvas, size):
    for col in range(size):
        left = col * 50
        right = left + 50
        canvas.create_rectangle(left, 0,
                                    right, 50)
```


Draw Multiple Rows for a Grid

Now we just need to repeat the logic that drew the first row. Take the code from before and put it inside an outer loop. Note that the outer loop represents a cell's row, while the inner loop represents a cell's column.

Calculate the top of each cell based on the value's row, using the same logic that found the column coordinates.

```
def drawGrid(canvas, size):
    for row in range(size):
        top = row * 50
        bottom = top + 50
        for col in range(size):
        left = col * 50
        right = left + 50
        canvas.create_rectangle(left, top,
                            right, bottom)
```


Add Stripes with Conditionals

We can make the grid more exciting by adding colors to the cells, to draw stripes.

Stripes alternate by row or by column. Check whether the row/column is odd or even using the mod operator.

```
if row % 2 == 0:
    color = "red"
else:
color = "green"
canvas.create_rectangle(left, top,
right, bottom,
fill=color)
```


Activity: Vertical Stripes

You do: update the drawGrid code we just wrote to draw three columns of stripes instead of two rows.

What needs to change?

Learning Goals

Use for loops when reading and writing algorithms to repeat actions a specified number of times

Recognize which numbers will be produced by a range expression

Translate algorithms from control flow charts to Python code

Use nesting of statements to create complex control flow

