
#2-5: Algorithmic
Thinking
CS SCHOLARS – PROGRAMMING

Learning Goals
Identify whether a problem can be solved by following an algorithm,
applying a pattern, or problem solving

Solving Familiar Problems

Designing Algorithms
Finding the right Python syntax to write a program isn't really the hardest
part of programming. Designing an algorithm to solve a problem is where
the process really gets tricky.

Luckily, we don't always need to design brand new algorithms. In many
situations you can either use a pre-existing algorithm or an algorithmic
pattern you've used before.

Pre-Existing Algorithms
Algorithms can be represented in many forms
other than code!

Sometimes an algorithm might be provided to
you in the text of the problem statement itself.

For example, consider the prompt to the right.
We can use this prompt to find the input (a
number), the output (a Boolean, whether it's
prime), and a bit of the algorithm (check that
only 1 and the number itself are factors).

Algorithms can also be provided as flow charts
or formulas.

Write a function to determine whether a given
number is prime.

A number is prime if it is only divisible by two
numbers – itself and 1.

No other number between 1 and the prime
should be a factor.

Note that primes must be larger than 1.

Pseudocode
If we wanted to break this into abstracted algorithmic steps (also called pseudocode), it
might look like this:

Input: int (the number, x)

Output: bool (whether it's prime)

1) Verify that x is bigger than 1

2) Check all the numbers between 1 and x (non-inclusive)

 a) Verify that the number does not evenly divide x

3) Output whether x passed all verifications

It's often easier to code an algorithm if you write out the pseudocode first!

Algorithmic Patterns
There will also be many cases where an algorithm is not directly available
for a program you need to implement, but you still don't need to invent a
brand-new algorithm on your own. These programs will often follow
common algorithmic patterns.

If you can recognize when a problem is similar to a pattern you've seen
before, you can make the problem-solving process much more
straightforward.

Example Algorithmic Pattern
For example, consider the prompt on the
right.

The prompt isn't giving us the exact way to
solve the problem. But it feels similar to a
problem we've seen before- it's checking
for numbers that divide the given number,
just like isPrime!

We can use the structure of isPrime
(looping over possible factors and
checking something for each) as a starting
place.

Write a function that checks
whether a number is powerful.

A positive integer x is powerful if,
for every prime y that divides x, y2
also divides x.

isPowerful
def isPowerful(num):

 for factor in range(2, num+1):

 if isPrime(factor) and num % factor == 0:

 # factor**2 also needs to divide num

 if num % (factor ** 2) != 0:

 return False

 return True

Solving New Problems

Inventing New Algorithms
There will be times when you need to write an algorithm that is unlike any
problem you've worked with before. In this situation, you can't rely on a pre-
built algorithm or adapt an algorithmic pattern; you need to build a new
algorithm on your own.

This is one of the hardest parts of the programming process, because you can't
follow instructions to get the right answer; every problem is different. This just
takes practice to learn.

However, there are a few strategies you can use that might make the problem-
solving process easier.

Strategy 1: Human Computer
First, you can use the human computer strategy to look for natural approaches
towards solving the problem.

Try to solve an example input to the problem yourself, as a human being. You
can then extrapolate from your own approach to come up with an algorithm.

The human computer approach works best when you make your own approach
as systematic and detailed as possible. Pay attention to every step you take, and
make sure not to skip steps. Think about how the computer would see the
problem- would the computer see it differently from you?

Human Computer Example
Example: Write the function rectangularPegRoundHole(r, w, h),
which returns True if a rectangular peg with width w and height h can
pass through a round hole with radius r, and False otherwise.

You Do: Imagine trying to fit a rectangular object into a round hole. How
can you tell if the peg will be able to fit or not?

Human Computer Example
The longest part of the rectangle is its diagonal. If the diagonal fits, the
rest will too; if the diagonal doesn't fit, then the whole thing doesn't work.

Now you just need to calculate the length of that diagonal in code and
compare it to the diameter.

Human Computer Code
def rectangularPegRoundHole(r, w, h):

 # calculate diagonal

 diagonal = (w**2 + h**2)**0.5

 # calculate diameter

 diameter = r * 2

 # compare

 return diagonal <= diameter

Strategy 2: Test-Driven Design
Another strategy that can help make problem solving easier is test-driven
design. This is an approach where you start by generating test cases
instead of by jumping right into the problem.

Test-driven design can be useful because it helps you think through all the
requirements of the code, which can help you notice patterns and edge
cases in advance. This is better than realizing you've made a logical error
only after you've written all the code.

Test-Driven Design Example
Example: Write the function nearestBusStop(street) that takes a
non-negative integer street number and returns the nearest bus stop to
the given street. Buses stop on every 8th street, including street 0, and
ties go to the lower street.

You Do: what are some test cases we could use for this function that
would inform us about how it works?

Test-Driven Design Example
Normal case: the nearest bus stop to 6th street would be 8th street

Edge case: where is there a change in results, maybe from 8th street to
16th street? 12th street goes to 8th street, but 13th street goes to 16th street

Special case: do we need to deal with negative or float street numbers?
No, the prompt says non-negative integer.

The test functions show that this is like a step function. We can use
conditionals and the mod operator to make this work.

Test-Driven Design Code
def nearestBusStop(street):

 # get distance from prev street

 belowDistance = street % 8

 if belowDistance <= 4: # edge case specifies this

 return street - belowDistance # lower street

 else:

 return street + (8 - belowDistance) # upper

 # OR

 offset = street + 3

 return offset - (offset % 8)

Strategy 3: Simplify and Solve
The third strategy is called simplify and solve. The main idea is that it's
sometimes easier to solve a problem if you make that problem simpler
first.

Solve the smaller problem, then add back in the more complex details
once the core problem is done.

Simplify and Solve Example
Example: we want to draw the flag of the United States using tkinter
graphics.

You Do: how can you break the US flag down into simpler parts?

Simplify and Solve Example
Start with just the stripes of the flag
with a blue rectangle in the corner.
Match proportions as you go!

Then arrange the stars by drawing
circles instead. Start with a normal
grid, then alternate stars.

Finally, figure out how to draw a star
instead of a circle. You can use a
helper method here!

Simplify and Solve Code – Step 1
We'll need lists to draw stars properly. But we can do the rest now!

def drawFlag(canvas, width, height):
 numStripes = 13
 stripeHeight = height / numStripes
 for stripe in range(numStripes):
 top = stripe * stripeHeight
 if stripe % 2 == 0:
 color = "red"
 else:
 color = "white"
 canvas.create_rectangle(0, top, width, top + stripeHeight,
 fill=color, width=0)

 squareHeight = stripeHeight * 7
 squareWidth = width * 0.4
 canvas.create_rectangle(0, 0, squareWidth, squareHeight,
 fill="blue", width=0)

Simplify and Solve Code – Step 2
 ...

 starRows = 9
 starCols = 11
 starYMargin = squareHeight / 20
 starSize = (squareHeight - 2 * starYMargin) / starRows
 innerXMargin = squareWidth / 60
 outerXMargin = (squareWidth - starCols * starSize - innerXMargin * 10) / 2
 for row in range(starRows):
 top = starYMargin + row * starSize
 for col in range(starCols):
 if (row % 2 == 0 and col % 2 == 0) or \
 (row % 2 == 1 and col % 2 == 1):
 left = outerXMargin + col * (starSize + innerXMargin)
 canvas.create_oval(left, top, left + starSize, top + starSize,
 fill="white", width=0)

Learning Goals
Identify whether a problem can be solved by following an algorithm,
applying a pattern, or problem solving

	Slide 1: #2-5: Algorithmic Thinking
	Slide 2: Learning Goals
	Slide 3: Solving Familiar Problems
	Slide 4: Designing Algorithms
	Slide 5: Pre-Existing Algorithms
	Slide 6: Pseudocode
	Slide 7: Algorithmic Patterns
	Slide 8: Example Algorithmic Pattern
	Slide 9: isPowerful
	Slide 10: Solving New Problems
	Slide 11: Inventing New Algorithms
	Slide 12: Strategy 1: Human Computer
	Slide 13: Human Computer Example
	Slide 14: Human Computer Example
	Slide 15: Human Computer Code
	Slide 16: Strategy 2: Test-Driven Design
	Slide 17: Test-Driven Design Example
	Slide 18: Test-Driven Design Example
	Slide 19: Test-Driven Design Code
	Slide 20: Strategy 3: Simplify and Solve
	Slide 21: Simplify and Solve Example
	Slide 22: Simplify and Solve Example
	Slide 23: Simplify and Solve Code – Step 1
	Slide 24: Simplify and Solve Code – Step 2
	Slide 25: Learning Goals

