
#3-1: Strings and Lists I
CS SCHOLARS – PROGRAMMING

Hw2 Recap
When reading code with nested conditionals, note that you should read every level of
conditional, not just the most recent one! All relevant branches must pass to reach the desired
state.

When building test cases for edge cases, it's best to test BOTH sides of the edge, not just one.

When working with graphics, note that our new starter code puts the tkinter setup code in a
function. You can just call that test function to run your code; you don't need to set it up
yourself at the top level!

Don't add additional parameters to function definitions! You should be able to solve the
problem with only the provided input.

Learning Goals
Read and write code using strings and lists

Index and slice into strings/lists to break them up into parts

Use for loops to loop over strings/lists by index

3

String and List Syntax

4

String Syntax
We introduced strings as a core datatype in Week 1. Strings are defined as text
inside of quotes.

s = "Hi everyone!"

We can concatenate strings together, and we can also repeat strings with
multiplication.

"ABC" + "DEF" # "ABCDEF"

"HA" * 3 # "HAHAHA"

5

Special Characters
Most characters that appear in text can be typed directly into strings, but some
are more difficult to work with. These include the enter character (newline) and
the tab character (tab). To represent these characters in a string, we'll use a
shorthand:

"ABC\nDEF" # '\n' = newline, or pressing enter/return

"ABC\tDEF" # '\t' = tab

The \ character is a special character that indicates an escape sequence. It is
modified by the letter that follows it. These two symbols are treated as a single
character by the interpreter.

6

Triple Quotes
Early in the semester we showed how you can use triple-quotes to create multi-
line comments. You can also use them to create multi-line strings, and you can
type special characters into those strings directly, without using escape sequences!

s = """This Autumn midnight
Orion's at my window
shouting for his dog."""

is equivalent to:

s = "This Autumn midnight\nOrion's at my window\nshouting for his dog."

7

Haiku by Carol A. Coiffait

Strings are Collections of Characters
Unlike numbers and Booleans, strings can be broken down into individual parts
(characters). We say that a string is a sequence of characters. This is a core part of how
they're represented in Python.

We can use a special operator called in to see whether an individual part occurs in the
string. This returns a Boolean.

"e" in "Hello" # True

"W" in "CRAZY" # False

What if we want to store a sequence of some other datatype in a single value?

8

Lists are Containers for Data
A list is a new data type that holds a sequence of data values.

Example: a sign-in sheet for a class.

Lists make it possible for us to assemble and analyze a collection of data
using only one variable.

9

Sign In Here
0. Elena
1. Max
2. Eduardo
3. Iyla
4. Ayaan

List Syntax
We use square brackets to set up a list in Python.

a = [] # empty list

b = ["uno", "dos", "tres"] # list with three strings

c = [1, "dance", 4.5] # lists can have mixed types

10

Basic List Operations
Lists share most of their basic operations with strings.

a = [1, 2] + [3, 4] # concatenation – [1, 2, 3, 4]

b = ["a", "b"] * 2 # repetition – ["a", "b", "a", "b"]

d = 4 in ["a", "b", 1, 2] # membership – False

11

Activity: Evaluate the Code
You do: what will each of the following code snippets evaluate to?

[5] * 3

"A" in "easy"

[1] + [] + ["B"]

12

Indexing and Slicing

13

Strings are Made of Characters
While problem solving, we'll often want to access the individual parts of strings,
lists, and other sequences. For example, how can we access a specific character
in a string?

First, we need to determine what each character's position is. Python assigns
integer positions in order, starting with 0.

14

S T E L L A

0 1 2 3 4 5

STELLA

Getting Values By Location
If we know a character's position, Python will let us access that character directly
from the string. Use square brackets with the integer position in between to get the
character. This is called indexing.

s = "STELLA"
c = s[2] # "E"

The same thing works with lists!

lst = [15, 110]
lst[1] # 110

We can get the number of characters in a string or list with the built-in function
len(s). This function will come in handy soon!

15

Common Indexes
How do we get the first character in a string?
s[0]

How do we get the last element in a list?
lst[len(lst) - 1]

What happens if we try an index outside of the string/list?

s[len(s)] # runtime error

16

Activity: Guess the Index
You do: Given the string "abc123", what is the index of...

"a"?

"c"?

"3"?

17

Slicing Produces a Substring/Subset
We can also get a whole substring from a string or subset from a list by specifying
a slice.

Slices are exactly like ranges – they can have a start, an end, and a step. But slices
are represented as numbers inside of square brackets, separated by colons.

s = "abcde"

s[2:len(s):1] # "cde"

s[0:len(s)-1:1] # "abcd"

s[0:len(s):2] # "ace"

18

Slicing Shorthand
Like with range, we don't always need to specify values for the start, end, and
step. These three parts have default values: 0 for start, len(var) for end, and 1
for step. But the syntax to use default values looks a little different.

lst[:] and lst[::] are both the list itself, unchanged

lst[1:] is the list without the first element (start is 1)

lst[:len(lst)-1] is the list without the last element (end is len(lst)-1)

lst[::3] is every third element of the list (step is 3)

19

Example: Extract Information from Text
Let's assume we have a variable text that holds a greeting:
"Hello NAME". We want to extract just the name from the text.

We can use string slicing! Start the slice at the location of the first
character of the name.

text = "Hello Jonathan"

name = text[len("Hello "):] # "Jonathan"

20

Activity: Find the Slice
You do: Given the list

lst = [2, 4, "t", "r", 3.4, 8.1, 23, "okay", 110, "woo"]

what slice would we need to get the sublist ["t", 8.1, 110]?

21

List Index Assignment
Using indexes, we can do something new and cool – we can directly
change the values inside a list!

If you assign a list index to a new value, like how you would set a variable
to a value, it will change the value in the list permanently.

lst = ["a", "b", "c"]

lst[1] = "foo"

lst # ["a", "foo", "c"]

22

String Index Assignment Doesn't Work
However, index assignment only works for lists. You can't use index assignment
on strings; you'll get a runtime error. To modify a string, you need to assign the
whole variable to a new value instead.

s = "abc"

s[1] = "z" # TypeError

s = s[:1] + "z" + s[2:] # s now holds "azc"

This is because of how strings and lists are stored in computer memory. We call
lists mutable and strings immutable. Mutable values can be modified directly;
immutable values cannot.

23

Learn more: https://www.cs.cmu.edu/~15110-s23/slides/week5-1-references.pdf

https://www.cs.cmu.edu/~15110-s23/slides/week5-1-references.pdf

Looping with Sequences

24

Looping Over Sequence Indexes
Now that we have indexes and slices, we can loop over the characters in a string or the elements in a list by
visiting each index in the value in order.

The sequence's first index is 0 and the last index is len(var) - 1. Use range(len(var)).

s = "Hello World"

for i in range(len(s)):

 print(i, s[i])

lst = ["What", "a", "nice", "day!"]

for i in range(len(lst)):

 print(i, lst[i])

25

Example: Looping over Sequences
We can develop algorithms using loops over strings and lists whenever we
need to visit each index in the string/list to solve a problem. For example,
the following loop sums all the values in prices.

prices = [5.50, 3, 2.75]

total = 0

for i in range(len(prices)):

 total = total + prices[i]

print(total)

26

Activity: Code Reading
What will the following code print?

s = "abcdefg"

count = 0

for i in range(len(s)):

 if i % 3 == 0:

 print(s[i])

 count = count + 1

print(count)

27

Example: Building New Sequences
We can also build new strings/lists using concatenation within a loop!

lst = []

for i in range(1, 11):

 lst = lst + [i] # concatenate to end

print(lst)

28

Example: Building New Sequences
You can even use an existing string/list to create a new string/list. For
example, this code makes a backwards version of the given string.

s = "awesome"

result = ""

for i in range(len(s)):

 result = s[i] + result # add s[i] to front!

print(result)

29

Activity: Double Numbers
Write a bit of code that takes a list of numbers and creates a new list of
numbers where each number has been doubled.

For example, given [1, 2, 3], the code should produce [2, 4, 6].

30

Algorithmic Thinking with Loops
If you need to solve a problem that involves doing something with every character in a string, use a
for loop over that string.

For example – how do we make a version of a string that doesn't include any spaces? Make a new
string by checking each character and only add each one if it isn't a space.

s = "Wow! This is so exciting!"

result = ""

for i in range(len(s)):

 if s[i] != " ": # note the space between the quotes!

 result = result + s[i]

print(result) # "Wow!Thisissoexciting!"

31

For Loop Indexes are Flexible
For loops may seem straightforward when the loop control variable refers to each index in the string. But we
can get more creative with what the variable is used for when necessary!

For example – how would you check whether a string is a palindrome (the same front-to-back as it is back-to-
front)? Use the variable as the front index and the back index offset.

def isPalindrome(s):

 for i in range(len(s)):

 front = s[i]

 back = s[len(s) - 1 - i]

 if front != back:

 return False

 return True

32

Activity: Coding with Strings
You might be able to recognize a person by the types of punctuation they use in text
messages. Maybe one friend loves exclamation points while another friend never uses
them.

You do: write a function getPunctuationFrequency(text, punc) that takes a
text message (a string) and a punctuation character (another string) and returns the
frequency of how often that character appears in the text compared to other characters
- the number of times it appears over the total number of characters.

For example, getPunctuationFrequency("That's so exciting!! Good for
you man!", "!") would return ~0.079, because exclamation marks form 3/38 =
~0.079 as a ratio of the characters in the text.

33

[if time] Try it with real data!
We can try running our analysis function on real texts!

Websites like Project Gutenberg make the text of books available online for free. You can copy
that text into a string, then run that string through the function.

Running the function through some popular classic fiction and trying out a few different types of
punctuation already gleans interesting results. For example, the character . takes up 1.15% of text
in The Great Gatsby compared to 0.82% in Pride and Prejudice; on the other hand, the character ;
takes up only 0.03% of text in The Great Gatsby compared to 0.21% of text in Pride and Prejudice.

Combining these frequencies together can give us an interesting map of the writing styles of
different authors!

34

https://www.gutenberg.org/

Learning Goals
Read and write code using strings and lists

Index and slice into strings/lists to break them up into parts

Use for loops to loop over strings/lists by index

35

	Slide 1: #3-1: Strings and Lists I
	Slide 2: Hw2 Recap
	Slide 3: Learning Goals
	Slide 4: String and List Syntax
	Slide 5: String Syntax
	Slide 6: Special Characters
	Slide 7: Triple Quotes
	Slide 8: Strings are Collections of Characters
	Slide 9: Lists are Containers for Data
	Slide 10: List Syntax
	Slide 11: Basic List Operations
	Slide 12: Activity: Evaluate the Code
	Slide 13: Indexing and Slicing
	Slide 14: Strings are Made of Characters
	Slide 15: Getting Values By Location
	Slide 16: Common Indexes
	Slide 17: Activity: Guess the Index
	Slide 18: Slicing Produces a Substring/Subset
	Slide 19: Slicing Shorthand
	Slide 20: Example: Extract Information from Text
	Slide 21: Activity: Find the Slice
	Slide 22: List Index Assignment
	Slide 23: String Index Assignment Doesn't Work
	Slide 24: Looping with Sequences
	Slide 25: Looping Over Sequence Indexes
	Slide 26: Example: Looping over Sequences
	Slide 27: Activity: Code Reading
	Slide 28: Example: Building New Sequences
	Slide 29: Example: Building New Sequences
	Slide 30: Activity: Double Numbers
	Slide 31: Algorithmic Thinking with Loops
	Slide 32: For Loop Indexes are Flexible
	Slide 33: Activity: Coding with Strings
	Slide 34: [if time] Try it with real data!
	Slide 35: Learning Goals

