
#3-2: Strings and Lists II
CS SCHOLARS – PROGRAMMING

Learning Goals
Use for loops to loop over strings/lists by component

Use string/list methods to call functions directly on values

Read and write code using 2D lists

2

Looping over Sequences

3

Looping Over Sequences Directly
If we don't care about where values are located in a sequence, we don't need to
use a range in the for loop. We can loop over the parts of a sequence directly
by providing the value instead of a range.

for <itemVariable> in <sequenceValue>:
 <itemActionBody>

For example, if we run the following code, it will print out each string in the list
with an exclamation point after it.

wordlist = ["Hello", "World"]
for word in wordList:
 print(word + "!")

4

Example: Looping over Strings
Another example – how do we count the number of exclamation points in a
string? We don't need the indexes, so we can loop over the string directly.

s = "Wow!! This is so! exciting!!!"

count = 0

for c in s:

 if c == "!":

 count = count + 1

print(count) # 6

5

Choosing Loops
How do you decide whether to loop over a range or loop over the value directly?
Think about whether you need to know where the parts are located in the
sequence.

For example – what if you wanted to loop over a pair of lists at the same time?
Use a single for-range loop and share the loop control variable between the two
lists.

def printPhonebook(names, numbers):

 for i in range(len(names)):

 print(names[i], ":", numbers[i])

6

Activity: findMax(lst)
Write a function findMax(lst) which takes a list of numbers and
returns the largest number in the list.

Hint: consider what variables you'll need to keep track of, and what type
of loop you should use.

7

Methods

8

Methods Are Called Differently
Most string and list built-in functions (and data structure functions in general) work differently
from other built-in functions. Instead of writing:

isdigit(s)

write:

s.isdigit()

This tells Python to call the built-in string function isdigit on the string s. It will then return a
result normally. We call this kind of function a method, because it belongs to a data structure.

This is how our Tkinter methods work too! create_rectangle is called on canvas, which is a
data structure.

9

Don't Memorize- Use the API!
There is a whole library of built-in string and list methods that have already been written; you can
find them at

docs.python.org/3/library/stdtypes.html#string-methods

and

docs.python.org/3/tutorial/datastructures.html#more-on-lists

We're about to go over a whole lot of potentially useful methods, and it will be hard to memorize
all of them. Instead, use the Python documentation to look for the name of a function that you
know probably exists.

If you can remember which basic actions have already been written, you can always look up the
name and parameters when you need them.

10

https://docs.python.org/3.8/library/stdtypes.html#string-methods
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Some Methods Return Information
Some methods return information about the value.

s.isdigit(), s.islower(), and s.isupper()
return True if the string is all-digits, all-lowercase, or
all-uppercase, respectively.

s.count(x) and lst.count(x) return the
number of times the subpart x occurs in s or lst.

s.index(x) and lst.index(x) return the index
of the subpart x in s or lst, or raise an error if it
doesn't occur in the value.

s = "hello"

lst = [10, 20, 30, 40, 50]

s.isdigit() # False

s.islower() # True

"OK".isupper() # True

s.count("l") # 2

lst.count(20) # 1

s.index("o") # 4

lst.index(5) # ValueError!

11

Example: Checking a String
As an example of how to use methods, let's write a function that returns
whether or not a string holds a capitalized name. The first letter of the
name must be uppercase and the rest must be lowercase.

def formalName(s):

 return s[0].isupper() and s[1:].islower()

12

Activity: Evaluate the Code
You do: what will each of the following code snippets evaluate to?

"Yay".islower()

lst = [4, 8, 10, 8, 6, 4]

lst.count(4)

lst.index(4)

13

Some Methods Create New Values
Other methods return a new value based on the
original.

s.lower() and s.upper() return a new string
that is like the original, but all-lowercase or all-
uppercase, respectively.

s.replace(a, b) returns a new string where all
instances of the string a have been replaced with the
string b.

s.split(c) returns a list that has split up the
string based on the separator character, c.

s = "Hello"

a = s.lower() # a = "hello"

b = s.upper() # b = "HELLO"

c = s.replace("l", "y")

c = "Heyyo"

d = "one-two-three".split("-")

d = ["one", "two", "three"]

14

Example: Making New Strings
We can use these new methods to make a silly password-generating function.

def makePassword(phrase):

 phrase2 = phrase.lower()

 phrase3 = phrase2.replace("a", "@").replace("o", "0")

 return phrase3

15

Activity: getFirstName(fullName)
You do: write the function getFirstName(fullName), which takes a
string holding a full name (in the format "Farnam Jahanian") and
returns just the first name. You can assume the first name will either be
one word or will be hyphenated (like "Soo-Hyun Kim").

You'll want to use a method and/or an operation in order to isolate the
first name from the rest of the string.

16

Some Methods Change the Value
Finally, there are some methods that let us change
the value itself, without reassigning the variable.
We call these destructive methods.

lst.append(item) destructively adds a new
item to the end of a list.

lst.remove(item) destructively removes the
given item from a list once.

lst.sort() destructively sorts the list by
comparing all the elements.

Note that the function calls do not return a new
list; the original list is changed instead. That means
we typically call the method by itself and do not
assign the result to a variable.

lst = [1, 2, "a"]

lst.append("b")

lst = [1, 2, "a", "b"]

lst.remove("a")

lst = [1, 2, "b"]

lst = [40, 2, 13, 7]

lst.sort()

lst = [2, 7, 13, 40]

17

Example: getFactors(n)
Let's write a function that takes an integer and returns a list of all the factors of
that integer.

def getFactors(n):

 factors = []

 for num in range(1, n+1): # n is a possible factor

 if n % num == 0:

 factors.append(num)

 return factors

18

Example: removeEvens(lst)
Now let's write a function that takes a list of numbers and removes any numbers that
are not even.

def removeEvens(lst):
 i = 0
 while i < len(lst):
 if lst[i] % 2 == 0:
 lst.remove(lst[i])
 else:
 # only update i when we don't remove!
 i = i + 1
 return lst

19

Activity: longWordsOnly(words)
Write a function longWordsOnly(words) that takes a list of words
(strings) and returns a new list that only contains words that were longer
than 4 characters.

For example, longWordsOnly(["What", "a", "fabulous",
"day", "it", "is", "today"]) would return ["fabulous",
"today"].

Try using the append method to set up the new list instead of using list
concatenation!

20

2D Lists

21

2D Lists are Lists of Lists
We often need to work with data that is two-
dimensional, such as the coordinates on a
grid, values in a spreadsheet, or pixels on a
screen. We can store this type of data in a 2D
list, which is just a list that contains other lists.

For example, the 2D list to the right holds
population data, where each population entry
itself contains multiple data values (city,
county, and population).

22

Population List

0.

1.

2.

3.

4.

0. "Pittsburgh"
1. "Allegheny"
2. 302407

0. "Philadelphia"
1. "Philadelphia"
2. 1584981

0. "Allentown"
1. "Lehigh"
2. 123838

0. "Erie"
1. "Erie"
2. 97639

0. "Scranton"
1. "Lackawanna"
2. 77182

Syntax of 2D Lists
Setting up a 2D list is no different than setting up a 1D list; each inner list is one data value.

cities = [["Pittsburgh", "Allegheny", 302407],

 ["Philadelphia", "Philadelphia", 1584981],

 ["Allentown", "Lehigh", 123838],

 ["Erie", "Erie", 97639],

 ["Scranton", "Lackawanna", 77182]]

When indexing into a 2D list, the first square brackets index into a row and the second index into a column.
The length of a 2D list is the number of lists inside the outer list.

cities[2] # ["Allentown", "Lehigh", 123838]

cities[2][1] # "Lehigh"

len(cities) # 5

23

This is across multiple
lines but treated as one
line because each part
ends with a comma.

Activity: Evaluate the Code
Consider the following 2D list that represents a word search board

a = [["t", "y", "r", "t"],
["d", "a", "a", "s"],
["o", "c", "l", "y"],
["g", "e", "z", "f"]]

What is the index of the row the two "a"'s are on?

What is the index of the column the "r" is in?

What expression would let you access the letter "c"?

24

Looping Over 2D Lists
We can loop over a 2D list the same way we loop over a list. Indexing into a list
once will produce an inner list. We'll need to index a second time to get a value.

def getCounty(cities, cityName):

 for i in range(len(cities)):

 entry = cities[i] # entry is a list

 if entry[0] == cityName:

 return entry[1]

 return None # city not found

25

Looping Over All 2D List Elements
When you loop over a 2D list and want to access every element, you need to use nested for
loops. Often, the outer loop iterates over the indexes of the outer list (rows) and the inner
loop iterates over the indexes of the inner list (columns).

gameBoard = [["X", " ", "O"], [" ", "X", " "], [" ", " ", "O"]]

for row in range(len(gameBoard)): # each row is a list

 boardString = ""

 for col in range(len(gameBoard[row])): # each col is a string

 boardString = boardString + gameBoard[row][col]

 print(boardString) # separate rows on separate lines

26

Activity: getTotalPopulation(cities)
Fill in the blanks for the function getTotalPopulation(cities) that takes the city-
information 2D list from slide 23 and finds the total population of all cities in the list.

def getTotalPopulation(cities):

 __________ = 0

 for row in range(__________):

 pop = __________

 total = __________

 return total

Hint: note that the population is in the third column. Which index corresponds to that?

27

Learning Goals
Use for loops to loop over strings/lists by component

Use string/list methods to call functions directly on values

Read and write code using 2D lists

28

	Slide 1: #3-2: Strings and Lists II
	Slide 2: Learning Goals
	Slide 3: Looping over Sequences
	Slide 4: Looping Over Sequences Directly
	Slide 5: Example: Looping over Strings
	Slide 6: Choosing Loops
	Slide 7: Activity: findMax(lst)
	Slide 8: Methods
	Slide 9: Methods Are Called Differently
	Slide 10: Don't Memorize- Use the API!
	Slide 11: Some Methods Return Information
	Slide 12: Example: Checking a String
	Slide 13: Activity: Evaluate the Code
	Slide 14: Some Methods Create New Values
	Slide 15: Example: Making New Strings
	Slide 16: Activity: getFirstName(fullName)
	Slide 17: Some Methods Change the Value
	Slide 18: Example: getFactors(n)
	Slide 19: Example: removeEvens(lst)
	Slide 20: Activity: longWordsOnly(words)
	Slide 21: 2D Lists
	Slide 22: 2D Lists are Lists of Lists
	Slide 23: Syntax of 2D Lists
	Slide 24: Activity: Evaluate the Code
	Slide 25: Looping Over 2D Lists
	Slide 26: Looping Over All 2D List Elements
	Slide 27: Activity: getTotalPopulation(cities)
	Slide 28: Learning Goals

