
#3-3: Text-Based
Interaction
CS SCHOLARS – PROGRAMMING

Submit Bonus Lecture Ideas!
Next Wednesday we have time to run a bonus lecture on a Computer
Science topic that you all are interested in.

If there's a topic you'd specifically like to learn about, please send Prof.
Kelly a Slack or email message by Thursday EOD with your topic.

We'll do a poll on Friday in class to choose the topic.

2

Learning Goals
Create interactive programs using repeated input and output via text

Read and write data from files

Use string operations and methods to extract data from plaintext

3

Input and Output

4

Interacting with the User
Now we have everything that we need to
build programs that can authentically
interact with the person using them (the
'user').

When we build an interactive program, we
have to take input from the user, process
it in the system, and use it to produce
output that will be shown to the user in
some way.

This process repeats indefinitely until
some goal is met.

5

input

output

Text-based Interaction
One way to process input and create output is via text-based interaction.

Get all user input through the input function we learned previously. Produce all
output as text displayed via the print function to the interpreter.

To repeat the procedure, use a loop. Since we usually do not know exactly how
many repetitions will be needed, a while loop is often used (with the loop
control variable based on the user's input).

You'll usually want to use a variable to collect input from the user. The type of
that variable depends on your goal!

6

Example: Data Entry
Let's write a simple program
that gets multiple inputs from
the user and process them like
a data stream.

We'll need to give the user a
way to signal that they're done
entering numbers. This can by
done with a special input, like
the string 'q'.

Note that a new input is
collected and a new output is
shown in every iteration of the
loop.

numbers = []

value = input("Enter a number, or q to quit:")

while value != "q":

 num = int(value)

 numbers.append(num)

 print("Current numbers:", numbers)

 value = input("Enter a number, or q to quit:")

print("Total sum:", sum(numbers))

7

Activity: Longest String
You do: Write a bit of code that repeatedly asks the user to enter strings.
When the user enters an empty string (presses the enter key without
typing anything), the function will output the longest string the user
typed. You can break ties however you want.

8

Validating Input
We may sometimes need to validate user
input, to make sure it matches the
requirements.

For example, in the data entry program
we might want to ensure that the input
actually is a number, and a positive
number, before accepting it. We can use
methods and operators to ensure this.

It often helps to move processing user
input into a helper function, to avoid
overcomplicating the original function.
We'll talk about these more next week!

def getUserInput():
 while True: # returning will stop loop
 value = input("Enter a number, or q to quit:")
 if value == "q":
 return value
 elif value.isnumeric():
 value = int(value)
 if value > 0:
 return value

def processData():
 numbers = []
 value = getUserInput()
 while value != "q":
 numbers.append(value)
 print("Current numbers:", numbers)
 value = getUserInput()
 print("Total sum:", sum(numbers))

9

Activity: reorderList
You do: write a function that takes a list of strings and asks the user to
enter a new order for the strings, one value at a time. For example, if we
call reorderList(["a", "b", "c", "d"]), the user could enter c,
then a, then d, then b, and the function would return the list ["c",
"a", "d", "b"].

Make sure your program has clear requests for input, understandable
output, a well-managed interaction loop, and validates the user input!

10

Reading Data from Files

11

Reading Data From Files
As we interact with the user, we may also want to refer to data stored
elsewhere on the computer. That means we need to read data from a file.

All the files on your computer are organized in directories, or folders.
When you're working with files, always make sure you know which
sequence of folders your file is located in. A sequence of folders from the
top-level of the computer to a specific file is called a filepath.

For example, Users > krivers > Documents > sample.txt refers to the file
sample.txt in the Documents folder, which is in the krivers folder, which is
in the Users folder, which is at the top level of the computer.

12

Opening Files in Python
To interact with a file in Python we'll need to access its contents. We can do this by using the
built-in function open(filepath). This will create a File object which we can read from or
write to.

f = open("/Users/krivers/Documents/sample.txt")

open can either take a full filepath or a relative path (relative from the location of the python
file). It's usually easiest to put the file you want to read/write in the same directory as the
python file so you can simply refer to the filename directly.

f = open("sample.txt")

if .py file is in Documents, will search for this file there

13

Reading and Writing from Files
When we open a file we need to specify whether we plan to read from or write to the file. This will change the
mode we use to open the file.

filename = "sample.txt"

f = open(filename, "r") # read mode

text = f.read() # reads the whole file as a single string

or

lines = f.readlines() # reads the lines of a file as a list of strings

f = open("sample2.txt", "w") # write mode

f.write(text) # writes a string to the file

Only one instance of a file can be kept open at a time, so you should always close a file once you're done with it.

f.close()

14

Be Careful When Programming With Files!
WARNING: when you write to files in Python, backups are not preserved. If
you overwrite a file, the previous contents are gone forever.

Be careful when writing to files! Make sure you're using the correct
filename before you run the program. Avoid overwriting original data
whenever possible; you can always wait and delete it after you're done.

15

Activity: Read a File
You do: Download the file
sample.txt from the schedule
page and move it to the same folder
as a python script.

Try using open and read to open
the file and read the contents, then
print the contents.

Common file reading issues:
◦ make sure the file is actually in the

same directory as your python script
(check directory in the %cd line
when you run Thonny)

◦ make sure the filename you've
entered is actually the right filename
(including the filetype at the end!)

◦ Using repl.it? Upload the file to the
folder you're working in.

16

Extracting Data from Text

17

Parsing File Data
Once we've read text data from a file, what do we do with it?

You need to identify what kinds of patterns exist in the data and use that
information to structure it. The patterns you identify may depend on
which question you're trying to answer.

18

Questions to Ask
When parsing data from a file, start by identifying the pattern; then ask
yourself a few questions about that pattern.

◦ Does the pattern occur across lines, or some other delimiter?

◦ Where is the information in a single line/section?

◦ What comes before or after the information you want?

19

Tools to Use
Once you've identified where the information is located, use string slicing and string
methods to separate out the information you need.

Slicing (s[start:end:step]) can be used to remove parts of the data that are
unnecessary.

The split method (s.split(".")) can be used to break up data that is separated by a
known delimiter.

The index method (s.index(":")) can be used to find the location of the beginning or
end of a section. That can be combined with slicing or splitting to isolate the needed
data.

A new method called strip (s.strip()) can be used to remove whitespace (spaces,
tabs, and newlines) from the front and back of a string. This is useful for isolating the
core text of a string.

20

Example: Parsing a Chat Log
chat.txt is a dataset
based on a chat log
from a previous class.
(All student names
have been modified to
preserve student
privacy).

How could we get the
names of everyone
who participated in the
chat? What's the
pattern?

14:54:28 From Malika : Could I use
recursion for AuthorMap?

14:56:03 From Ed : yep

15:00:22 From Arman : what is
str.digits?

15:01:21 From Margaret Reid-Miller to
Kelly Rivers(Privately) : We only hear the
music when you speak

15:08:31 From Ed : how would you know if
it were O(n**.5)?

21

Example: Parsing a Chat Log
Each message occurs on an
individual line; split the text based
on newlines ("\n").

"From" occurs before each name
and " : " occurs afterwards.
index to find those locations and
slice based on them.

Use strip to clear extra
whitespace.

f = open("chat.txt", "r")
text = f.read()
f.close()

people = []
for line in text.split("\n"):
 start = line.index("From ") + \
 len("From ")
 line = line[start:]
 end = line.index(" : ")
 line = line[:end]
 line = line.strip()
 people.append(line)
print(people)

22

Example: Parsing a Chat Log
A few lines don't match the
pattern; account for those too.

If statements are useful when
something breaks a pattern.

...

 line = line[:end]

 if "(Privately)" in line:

 end = line.index("to")

 line = line[:end]

 line = line.strip()

...

23

Activity: Get Speaking Roles
You Do: you can download the full text of books in the public domain from
Project Gutenberg. Go to the site, download the Plain Text version of
Romeo and Juliet, then write a Python program to scrape the names of all
the speaking roles in the play from the document.

Note: you can technically find a list of all the speaking roles at the top of
the document. Don't rely on this! Challenge yourself to find a pattern
within the play itself that will let you extract the names.

24

https://www.gutenberg.org/

Learning Goals
Create interactive programs using repeated input and output via text

Read and write data from files

Use string operations and methods to extract data from plaintext

25

	Slide 1: #3-3: Text-Based Interaction
	Slide 2: Submit Bonus Lecture Ideas!
	Slide 3: Learning Goals
	Slide 4: Input and Output
	Slide 5: Interacting with the User
	Slide 6: Text-based Interaction
	Slide 7: Example: Data Entry
	Slide 8: Activity: Longest String
	Slide 9: Validating Input
	Slide 10: Activity: reorderList
	Slide 11: Reading Data from Files
	Slide 12: Reading Data From Files
	Slide 13: Opening Files in Python
	Slide 14: Reading and Writing from Files
	Slide 15: Be Careful When Programming With Files!
	Slide 16: Activity: Read a File
	Slide 17: Extracting Data from Text
	Slide 18: Parsing File Data
	Slide 19: Questions to Ask
	Slide 20: Tools to Use
	Slide 21: Example: Parsing a Chat Log
	Slide 22: Example: Parsing a Chat Log
	Slide 23: Example: Parsing a Chat Log
	Slide 24: Activity: Get Speaking Roles
	Slide 25: Learning Goals

