
#3-4: Event-Based
Interaction
CS SCHOLARS – PROGRAMMING

Reminder: Submit Bonus Lecture Ideas!
Next Wednesday we have time to run a bonus lecture on a Computer
Science topic that you all are interested in.

If there's a topic you'd specifically like to learn about, please send Prof.
Kelly a Slack or email message by today EOD with your topic.

We'll do a poll on Friday in class to choose the topic.

2

Learning Goals
Use a Model-View-Controller framework to create an interactive program

Use mouse events and key events to trigger changes in an interactive
program.

3

Interaction Framework

4

Event-Based Interaction
Most programs that you interact with use much more than just text! They
may let you use the mouse to interact with the screen and the keyboard
to provide other inputs (like directions with the arrow keys). The program
then probably displays results visually, not just through text.

That's what we'll work on next – how to write a program that can capture
more complex user events and produce more complex output. We'll do
this with an interaction framework that uses Tkinter to display graphics
and accept user mouse and keyboard input.

5

Interaction Parts in Code
Our interaction code will be composed of three parts:
◦ A model which stores the core data components used in the interaction in a

shared data structure
◦ Event controllers which run rules that update the model components when

user events occur
◦ A graphical view which repeatedly displays the current state of the model

All three of these parts will be organized in an interaction framework
which sets up the initial model, manages the controllers, and updates the
view as needed. That framework is provided for you, but you'll need to fill
in the parts!

6

Model, View, Controller

7

Model

Controller View

Activity: Match the Simulation Parts
Model

View

Controller

A: Capture when the user presses a
button and run the appropriate rule

B: Display the stored circles on the
screen

C: Store a list of locations and colors
of circles

8

Making the Components
We need to be able to pass the whole model around the code as a single variable. We'll
do this by creating an object called data and adding components to that object.

These components will act just like variables; the only difference is that we'll use
data.componentName instead of componentName by itself. It's similar to when we
use a library function or call a method on a list. For example, to store information about
a circle that represents some part of the model, we could set:

data.x = 200
data.y = 200
data.r = 50

By storing all the components in one structure we can pass the same structure around to
all the functions we write as a single parameter. This structure will be mutable (like
lists!), so we'll be able to update it directly in the rule functions, then display the
updated data in the view function.

9

Displaying the Model
To display the whole model, we'll use Tkinter to draw graphics that represent the components
visually. By referring to component values in data in the view function, we can make graphics
that change alongside the model.

For example, if data.x = 200, data.y = 200, and data.r = 50, we could draw a circle
with:

canvas.create_oval(data.x – data.r, data.y – data.r,

 data.x + data.r, data.y + data.r)

We'll erase and re-draw the graphics window every time the rules of the program run. If we
change the components a little bit at a time, this makes the display appear to update smoothly.

10

Running the Rules
We can run the either when a mouse event happens, or when a keyboard event
happens.

When you take an action on your computer, a signal is sent from the computer hardware
to any programs that are currently running. That signal has information about the type
of the event (key press vs. mouse click), plus any additional information that might be
useful (which key was pressed).

Once this signal is received, it triggers a function. If that function runs a rule that
changes the model's components in data, this will simulate the model changing due to
an event!

data.x = data.x + 5 # move the circle to the right on mouse click

11

Interaction Functions
Now we have everything we need for the interaction framework. You can find
starter code for the framework linked on the course website. For each interactive
program you make, start with the starter code, then update four functions to
build a simple simulation:

◦ init(data) makes the original components. data is the model object

◦ keyPressed(data, event) and mousePressed(data, event) run the rules
to update data. The parameter event holds information about the event.

◦ redrawAll(canvas, data) displays the model. canvas is a Tkinter canvas

This is different from the code we're used to because the functions work
together instead of running in a sequential order.

12

Simple Example – Color-Changing Ball
Let's start with a simple example. Say we want to draw a circle and have the color
of the circle change every time the user clicks the mouse.

The model should track any values that might change. In this case, that's the
color of the circle. Set an initial component value in init.

The rules should describe how the model changes when events occur. In this
case, we change the color in the shared data model with every call to
mousePressed.

The view should draw a circle in the middle of the window and set its color based
on the color in the model. This is done in redrawAll.

13

Simple Example Code
def init(data):
 # put variables in data here
 data.color = "red"

def redrawAll(canvas, data):
 # (200, 200) is center point
 # make sure to reference data for the parts that change!
 canvas.create_oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,
 fill=data.color)

def mousePressed(data, event):
 import random
 # Let's pick a color randomly!
 newColor = random.choice(["red", "orange", "yellow",
 "green", "blue", "purple"])
 data.color = newColor # update data to change the model

14

Activity: Make the circle grow
You do: open the interaction starter code and copy in the functions from
the previous slide. Run the code to make sure it works, then modify the
code in the three functions so that the circle grows larger each time a key
is typed.

Hint: you'll need to add one component to the model, the thing that is
changing. You should change that component in keyPressed and access
it while drawing the circle in redrawAll.

15

Key and Mouse Events

16

keyPressed Events
We can use the event parameter in the rules functions to create more
personalized interaction!

In keyPressed, the event parameter contains two values we can access with a
. (like string or list methods and the data components):

◦ event.char is a string that holds the character pressed

◦ event.keysym is a string that holds the 'name' of the character, for
characters we can't show in a string (e.g., Enter or BackSpace)

If we want to draw the last-pressed character in the middle of the screen, for
example, we would store that character in data, then draw it in redrawAll:

def keyPressed(event, data):
 data.text = event.char

17

Example Key Event
def init(data):
 data.color = "red"
 data.tmp = "" # need to hold partial strings

def redrawAll(canvas, data):
 canvas.create_oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,
 fill=data.color)

def keyPressed(event, data):
 # build up a color string one char at a time until user presses Return
 if event.keysym != "Return":
 data.tmp += event.char
 else:
 # move the color into data.color
 data.color = data.tmp
 data.tmp = ""

18

Activity: move circle up/down
You do: take the simulation code from the last activity (color-changing
circle) and update it so that the circle moves up when the user presses the
up key and down when the user presses the down key. The circle no
longer needs to change colors when other keys are pressed.

Note: you should use event.keysym. You'll be able to check it against
"Up" and "Down".

19

mousePressed Events
In mousePressed, the event parameter holds the pixel location where the user
clicked on the canvas.

◦ event.x is the x location

◦ event.y is the y location

If we want to move a circle around the canvas to be centered wherever you click,
we'd need to store the center location and draw the circle based on the model
location in redrawAll:

def mousePressed(event, data):
 data.cx = event.x
 data.cy = event.y

20

Example Mouse Event
def init(data):
 data.color = "red"

def redrawAll(canvas, data):
 canvas.create_oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,
 fill=data.color)

def mousePressed(event, data):
 import random
 newColor = random.choice(["red", "orange", "yellow",
 "green", "blue", "purple"])
 # Check if the user clicked inside the circle
 # Is the distance between the center and the click less than the radius?
 if ((event.x - 200)**2 + (event.y - 200)**2)**0.5 <= 50:
 data.color = newColor

21

Activity: make circle shrink
You do: take your code from the previous activity and modify it so that the
circle shrinks whenever the user clicks inside it. (If the user clicks outside,
it can change colors instead).

You can start with the bounds check from the previous slide, but you'll
need to change what happens in the conditional body!

22

Example: Circle Application
Now we can use all of this together to build an interactive program that
does something interesting!

Let's implement a simple application that generates a new circle of
random size and color every time the user clicks on the screen. Every time
the user clicks Backspace, a random circle is deleted.

23

24

def init(data):
 data.circles = []

def redrawAll(canvas, data):
 for circle in data.circles:
 [x, y, size, color] = circle
 canvas.create_oval(x - size, y - size,
 x + size, y + size, fill=color)

def keyPressed(event, data):
 if event.keysym == "BackSpace":
 if len(data.circles) > 0:
 index = random.randint(0, len(data.circles)-1)
 data.circles.remove(data.circles[index])

def mousePressed(event, data):
 x = event.x
 y = event.y
 size = random.randint(5, 50)
 color = random.choice(["red", "orange", "yellow",
 "green", "blue", "purple"])
 data.circles.append([x, y, size, color])

Learning Goals
Create interactive programs using text-based interaction to process user
input

Create interactive programs using event-based interaction to support
user interaction

25

Sidebar: Controller Functions – Event Loop
The event controller runs an event loop to capture the signals that the computer
sends out. To implement this event loop, we'll have our interaction system
constantly listen for events.

When an event occurs, the controller will catch it and send the event data on to
the correct rule function; then it will tell the view to update. This is done with a
special kind of Tkinter function called bind and is provided in the starter code.

With Tkinter we can listen for and bind functions to lots of different event types.
We'll care about just two: <Key>, a key press, and <Button-1>, a left mouse
click. There are lots of other Tkinter events we can implement if we want them:

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/event-types.html

26

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/event-types.html

	Slide 1: #3-4: Event-Based Interaction
	Slide 2: Reminder: Submit Bonus Lecture Ideas!
	Slide 3: Learning Goals
	Slide 4: Interaction Framework
	Slide 5: Event-Based Interaction
	Slide 6: Interaction Parts in Code
	Slide 7: Model, View, Controller
	Slide 8: Activity: Match the Simulation Parts
	Slide 9: Making the Components
	Slide 10: Displaying the Model
	Slide 11: Running the Rules
	Slide 12: Interaction Functions
	Slide 13: Simple Example – Color-Changing Ball
	Slide 14: Simple Example Code
	Slide 15: Activity: Make the circle grow
	Slide 16: Key and Mouse Events
	Slide 17: keyPressed Events
	Slide 18: Example Key Event
	Slide 19: Activity: move circle up/down
	Slide 20: mousePressed Events
	Slide 21: Example Mouse Event
	Slide 22: Activity: make circle shrink
	Slide 23: Example: Circle Application
	Slide 24
	Slide 25: Learning Goals
	Slide 26: Sidebar: Controller Functions – Event Loop

