
Advanced Programming
#3 – Dictionaries, Trees,
and Graphs
CS SCHOLARS – PROGRAMMING

Learning Goals
Use dictionaries when writing and reading code that uses pairs of data

Use binary trees implemented with dictionaries when reading and writing
code

Use graphs implemented as dictionaries when reading and writing simple
algorithms in code

2

Data Structures Organize Data
So far, we've learned about several different types of data – numbers,
strings, Booleans, lists. Lists in particular are interesting because they let us
store other data types inside of them.

Lists aren't the only data type we have to work with! There are lots of ways
to organize data. A list is a good for storing values in sequential (and
indexed) order, but what other types of data might we work with?

3

Dictionaries

4

Python Dictionaries Map Keys to Values
The first data structure we'll discuss is the dictionary. Dictionaries store
data in pairs by mapping keys to values.

We use dictionary-like data in the real world all the time! Examples include
phonebooks (which map names to phone numbers), the index of a book
(which maps terms to page numbers), or the CMU directory (which maps
andrewIDs to information about people).

5

Key-Value Pairs
In a dictionary, a key-value pair is two values that have been paired together for
organizational purposes. We'll be able to access the value by looking up the key,
like how we can access a list value using its index.

For example, if we stored a phonebook in a dictionary, a key might be the string
"CMU", and its value would be the string "412-268-2000". It wouldn't make
sense to switch the roles because our default action is to look up a phone
number based on a name, not vice versa.

Note: keys must be immutable, but values can be any type of data.

6

Python Dictionaries
Dictionaries have already been implemented for us in Python.

make an empty dictionary

d = { }

make a dictionary mapping strings to integers

d = { "apples" : 3, "pears" : 4 }

7

Python Dictionaries – Getting Values
Dictionaries are similar to lists. Instead of indexing by position, index by key:

d = { "apples" : 3, "pears" : 4 }

d["apples"] # the value paired with this key

len(d) # number of key-value pairs

If you try to access a key that doesn't exist, you'll get a runtime error.

d["ice cream"] # KeyError

We can also access all the keys or all the values separately:

d.keys()

d.values()

8

Python Dictionaries – Adding and Removing
How do we add a new key-value pair? Use index assignment with the key. This works
whether or not that key has been assigned a value yet. If the key is already in the
dictionary, the value for the key is updated; it does not add a new key-value pair.

d["bananas"] = 7 # adds a new key-value pair

d["apples"] = d["apples"] + 1 # updates the value

To remove a key-value pair, use pop with just the key as a parameter.

d.pop("pears") # destructively removes

9

Python Dictionaries – Search
We can search for a key in a dictionary using the built-in in operation.

d = { "apples" : 3, "pears" : 4 }

"apples" in d # True

"kiwis" in d # False

We can't use in to look up the dictionary's values; we need to loop over the
keys and check each key's value instead. How do we loop over a dictionary?

10

Activity: Trace the code
After running the following code, what key-value pairs will the dictionary
hold?

d = { "PA" : "Pittsburgh", "NY" : "New York City" }

d["WA"] = "Seattle"

d["NY"] = "Buffalo"

if "Pittsburgh" in d:

 d.pop("Pittsburgh")

11

Activity Answer
"PA" and "Pittsburgh"

"NY" and "Buffalo"

"WA" and "Seattle"

12

For Loops on Dictionaries
To loop over a dictionary, we must use a for loop directly over the
dictionary. The loop visits all key-value pairs in some order. The loop
control variable is set to the key of each key-value pair. To access the value,
you must index into the dictionary with that key.

13

d = { "apples" : 5, "beets" : 2, "lemons" : 1 }
for k in d:
 print("Key:", k)
 print("Value:", d[k])

Activity: countItems(foodCounts)
You do: write the function countItems(foodCounts) that takes a dictionary mapping foods
(strings) to counts (integers), loops over the key-value pairs, and returns the total amount of food
stored in the dictionary. The function should also print the number of each individual food type
as it counts up the total.

For example, if d = { "apples" : 5, "beets" : 2, "lemons" : 1 }, the function
might print

5 apples

2 beets

1 lemons

then return 8.

14

Activity Answer
def countItems(foodCounts):

 total = 0

 for food in foodCounts:

 print(foodCounts[food], food)

 total += foodCounts[food]

 return total

15

Coding with Dictionaries

16

Coding with Dictionaries – Track Information
We often use dictionaries when problem-
solving. One common use of dictionaries is
to track information about a list of values.

For example, given a list of students and
their college (represented as
"student,college"), how many students are
in each college?

We will create a dictionary with college as
the key and the student count as the value.

def countByCollege(studentLst):

 collegeDict = { }

 for student in studentLst:

 name = student.split(",")[0]

 college = student.split(",")[1]

 if college not in collegeDict:

 collegeDict[college] = 0

 collegeDict[college] += 1

 return collegeDict

17

Coding with Dictionaries – Find Most Common
We also use dictionaries to find the most
common element of a list, by mapping
elements to counts.

For example, given the dictionary returned
by the previous function, which college is
the most popular?

def mostPopularCollege(collegeDict):

 best = None

 bestScore = -1

 for college in collegeDict:

 if collegeDict[college] > bestScore:

 bestScore = collegeDict[college]

 best = college

 return best

18

Coding with Dictionaries – Nested Dictionaries
We can even use nested dictionaries in a
similar way to how we use nested (2D) lists.
Just map each key to another dictionary
(which will map other keys to specific
values).

For example, we can create a multiplication
table in a nested dictionary (outer keys are
x, inner keys are y, values are x*y).

def createMultDict(n):

 d = { }

 for x in range(1, n+1):

 innerD = { }

 for y in range(1, n+1):

 innerD[y] = x * y

 d[x] = innerD

 return d

m = createMultDict(4)

print(m[2][3]) # 6

19

Trees

20

Trees Hold Hierarchical Data
Sometimes we work with data that is hierarchical in nature. In this context,
'hierarchical' means that data occurs at different levels and is connected in some
way.

Hierarchical data shows up in many different contexts.
◦ File systems in computers – each folder is a rank above the files it contains
◦ Company organization schemas – the CEO at the top, interns at the bottom
◦ Sports tournament brackets – the overall winner is ranked highest

21

Trees are Hierarchical
A tree is a hierarchical data structure
composed of nodes (circles in the
example shown to the right).

Each node can hold a value (its data).

The node the level above a node is
called its parent, and nodes connected
on the level below are called its
children. In general, a node has exactly
one parent and can have any number of
children.

22

3

5 7

1 4

9

8

node 5

node 5's children

node 5's parent

Trees are Upside-down
Unlike real trees, trees in computer science
grow downward!

The top-most node is called the root. Every
(non-empty) tree has a root. The root has
no parent.

On the other hand, a node can have other
nodes as children, and those nodes can
have children as well. The number of levels
a tree can have is unlimited.

Nodes that have no children are called
leaves.

23

3

5 7

1 4

9

8

leaves

root

Trees are Recursive
A tree is a naturally recursive data structure.
Each node's children are subtrees, which are
just trees again.

For example, the root node 3 has two subtrees.
The subtree on the left has a root node 5. The
subtree on the right has a root node 7. Each of
these root nodes have subtrees as children.

Our base case can be a leaf (or even an empty
tree).

The recursive case makes the problem smaller
by repeating on the children, which are also
trees.

24

3

5 7

1

root

4 8

subtree
subtree

Binary Trees
It's possible to write algorithms for
trees that have an arbitrary number
of children, but in this class we'll
focus on binary trees.

A binary tree is a tree that can have
at most 2 children per node. We
assign these children names- left
and right, based on their position.

25

6

3 2

7 98

6's left child 6's right child

Activity: Find the Tree Parts
Given the tree shown to the right:

What is the root?

What are the children of node X?

What is the node X's parent?

What are the leaves?

26

S

T E

LX

HA R

Activity Answers
Root: S

Children of X: A, R

X's parent: T

Leaves: A, R, H

27

Coding with Trees

28

Implementing New Data Structures
Computer science uses a large number of classical data structures. Some of
these (like lists and dictionaries) are implemented directly by Python.
Others are not implemented directly; we need to design an
implementation ourselves.

Python does not implement trees directly. We'll implement trees using
recursively nested dictionaries.

Sidebar: these trees will be mutable; we can change the values in them
and add/remove nodes. That's beyond the scope of this class, though.

29

Python Syntax –
Trees as Dictionaries

Each node of the tree will be a dictionary that
has three keys.

The first key is the string "contents", which
maps to the value in the node.

The second key is the string "left", which
either maps to a node (dictionary) if the node
has a left child, or None if there is no left child.

The third key is the string "right", which
either maps to a node (dictionary) if the node
has a right child, or None if there is no right
child.

Our example tree is written as a dictionary to the
right.

t = { "contents" : 6,
 "left" : { "contents" : 3,
 "left" : { "contents" : 8,
 "left" : None,
 "right" : None },
 "right" : { "contents" : 7,
 "left" : None,
 "right" : None } },
 "right" : { "contents" : 2,
 "left" : None,
 "right" : { "contents" : 9,
 "left" : None,
 "right" : None } } }

30

6

3 2

7 98

Simple Example: getChildren(t)
Given a tree, how can we get the
children of the root node?

Access the "left" and "right"
subtrees directly, then access their
"contents", if they exist.

Note that we use two separate ifs,
not an if-elif, because it's
possible for both to be True.

def getChildren(t):

 result = []

 if t["left"] != None:

 leftT = t["left"]

 result.append(leftT["contents"])

 if t["right"] != None:

 rightT = t["right"]

 result.append(rightT["contents"])

 return result

31

Use Recursion When Coding with Trees
Because a tree is a recursive data structure, we'll usually need to use recursion to operate on
trees.

The base case is when the current node is a leaf and we need to do something with its value.

In the recursive case, we'll call the function recursively on the left and then call again on the right
child, if both exist. Usually we'll then combine those results in some way with the node's value.

Alternative approach: Make the base case when the tree is None (an empty tree) and always
recurse on both left and right children in the recursive case. This can be more confusing to think
about but is often simpler to program.

32

Example: countNodes
Let's write a program that takes a tree
of values and counts the number of
nodes in the tree.

The base case: return 1 (a single node).

The recursive case: add the counts of
the left and right subtrees together if
they exist, then add 1 more for the
current node.

def countNodes(t):

 if t["left"] == None and \

 t["right"] == None:

 return 1

 else:

 count = 0

 if t["left"] != None:

 count += countNodes(t["left"])

 if t["right"] != None:

 count += countNodes(t["right"])

 return count + 1

33

Example: countNodes – Different Base Case
Alternatively, we could solve this by
checking a different base case: whether the
node is an empty tree (if the current node
is None).

An empty tree has a 0 nodes; a non-empty
tree has a number of nodes based on its
two subtrees, plus the current node.

The difference here is that there are
always recursive calls to both children,
even if they might be None.

def countNodes(t):

 if t == None:

 return 0

 count = 0

 count += countNodes(t["left"])

 count += countNodes(t["right"])

 return count + 1

34

Example: sumNodes(t)
What if we instead wanted to add all the nodes in
the tree? (Let's assume it's a tree of integers).
Now we'll need to use the nodes' values.

Base case: directly return the value of the only
node (the leaf).

Recursive case: combine the sums of the two
subtrees (if they exist) with the current node's
value.

Our code structure is very similar to
countNodes, but now we're using
t["contents"].

def sumNodes(t):

 if t["left"] == None and \

 t["right"] == None:

 return t["contents"]

 else:

 result = 0

 if t["left"] != None:

 result += sumNodes(t["left"])

 if t["right"] != None:

 result += sumNodes(t["right"])

 return result + t["contents"]

35

Activity: listValues
You do: write the function listValues(t), which takes a tree and returns a list of all the values
in the tree. The values can be in any order, but try to put them in left-to-right order if possible.

Hint: this is almost the same structure as sumNodes, but you need to consider the type of the
values you'll return.

Given our example tree (shown below), the function returns: [8, 3, 7, 6, 2, 9].

You can test your code by copying the example tree's

implementation from the earlier slide.

36

6

3 2

7 98

Activity Answer
def listValues(t):

 if t["left"] == None and t["right"] == None:

 return [t["value"]]

 else:

 values = []

 if t["left"] != None:

 values += listValues(t["left"])

 values.append(t["value"])

 if t["right"] != None:

 values += listValues(t["right"])

 return values

37

Advanced Example: Family Trees
Now let's write a function that takes a genealogical family tree as data.

We have to flip the tree – the child is at the root, their parents are the node's children,
etc.

38

root

leaf

Advanced Example: getPastGen
Let's write a function that finds all
the child's ancestors from N
generations ago. N=1 would be their
parents; N=2 would be
grandparents; etc.

Note that for this problem, our base
case is not a leaf- it's when we reach
the generation we're looking for.

def getPastGen(t, n):

 if n == 0:

 return [t["contents"]]

 else:

 gen = []

 if t["left"] != None:

 gen += getPastGen(t["left"], n-1)

 if t["right"] != None:

 gen += getPastGen(t["right"], n-1)

 return gen

39

Graphs

40

Graphs are Like More-Connected Trees
Last time we discussed trees, which let us store data by connecting nodes
to each other to create a hierarchical structure.

Graphs are like trees – they are composed of nodes and connect those
nodes together. However, they have fewer restrictions on how nodes can
be connected. Any node can be connected to any other node in the
graph.

41

Graphs in the Real World
Graphs show up all the time in real-
world data. We can use them to
represent maps (with locations
connected by roads) and molecules
(with atoms connected by bonds).

We also commonly use graphs in
algorithms, to represent data like social
networks (with people connected by
friendships), or recommendation
engines (with items connected if they
were purchased together).

42

Graphs are Made of Nodes and Edges
The nodes in a graph are the same
as the nodes in a tree – they hold
the values stored in the structure.

The edges of a graph are the
connections between nodes.

We say that for a node X, any nodes
that X connects to with an edge are
X's neighbors.

43

A

B

E

H

C

G

D F

E's neighbors

Edges Can Have Weights
Sometimes edges can have weights,
such as the length of a road or the
cost of a flight. Our example graph
here has weights- the numbers next
to lines.

44

A

B

E

H

C

G

D F

9

3

2 1 7

5

2

4

Edges Can Have Directions
Edges can also be directed (from A to B
but not from B to A unless there is
another directed edge from B to A), or
undirected (go in either direction on an
edge between nodes).

The main graph to the right is mostly
undirected, except for the edge
between nodes D and F and the edges
between A and G, which are directed
(notice the arrows). Usually
directionality is not mixed like this in a
graph.

45

A

B

E

H

C

G

D F

Activity: Recognize the Parts
Consider the graph to the right.

How many nodes does the graph have?

How many edges?

What are the neighbors of node F?

Do the edges have weights?

Are the edges directed?

46

C

A

E F

D

B

Activity Answer
Nodes: 6

Edges: 7

Neighbors of F: C, E

Unweighted

Directed

47

Coding with Graphs

48

Represent Graphs in Python with Dictionaries
Like trees, graphs are not implemented directly by Python. We need to use
the built-in data structures to represent them.

Our implementation for this class will use a dictionary that maps node
values to lists. This is commonly called an adjacency list.

Unlike the tree representation, graphs will not be nested dictionaries; we'll
be able to access all the node values directly. That's because graphs aren't
inherently recursive.

We'll need to slightly alter this representation based on whether or not the
edges of the graph have weights.

49

Graphs in Python –
Unweighted Graphs

Graphs with no values on the edges are
called unweighted graphs.

The keys of the dictionary will be the
values of the nodes. Each node maps to a
list of its adjacent nodes (neighbors), the
nodes it has a direct connection with.

On the right, we show our example graph
in its dictionary implementation.

unweightedGraph = {

 "A" : ["B", "G"],

 "B" : ["A", "C"],

 "C" : ["B", "H"],

 "D" : ["F"],

 "E" : ["G", "H"],

 "F" : ["D"],

 "G" : ["A", "E", "H"],

 "H" : ["C", "E", "G"]

 }

50

A

B

E

H

C

G

D F

Graphs in Python –
Weighted Graphs
Weighted graphs have values associated
with the edges. We need to store these
values in the dictionary also.

We'll do this by changing the list of
adjacent nodes to be a 2D list. Each of the
inner lists represents a node/edge pair, so
it has two values – the adjacent node's
value and the weight of the edge.

On the right, we show our updated
example graph in this format.

51

A

B

E

H

C

G

5 3

2
91

7

2

weightedGraph = {
 "A" : [["B", 5], ["G", 2]],
 "B" : [["A", 5], ["C", 3]],
 "C" : [["B", 3], ["H", 9]],
 "D" : [["F", 4]],
 "E" : [["G", 1], ["H", 7]],
 "F" : [["D", 4]],
 "G" : [["A", 2], ["E", 1], ["H", 2]],
 "H" : [["C", 9], ["E", 7], ["G", 2]]
 }

D F
4

Finding a Graph's Nodes
Let's look at some basic examples of programming with graphs.

To print all the nodes in a graph, just look at every key in the dictionary.

52

def printNodes(g):
 for node in g:
 print(node)

Finding a Node's Neighbors
If we want to get the neighbors of a particular node, index into that node in the
dictionary.

53

def getNeighbors(g, node):
 return g[node]

If the graph has weights, we'll need to reconstruct the neighbor list:

def getNeighbors(g, node):
 neighbors = []
 for pair in g[node]:
 neighbors.append(pair[0])
 return neighbors

Finding a Graph's Edges
To print all the edges, you'll need to loop over each value in the dictionary too (a list of
nodes).

def printEdges(g):

 for node in g:

 for neighbor in g[node]:

 print(node + "-" + neighbor)

Note that this example is for an unweighted graph. To get neighbor values in a weighted
graph, index into neighbor[0].

54

Finding an Edge's Weight
Finally, to find an edge's weight, index and loop to find the appropriate
pair.

55

def getEdgeWeight(g, node1, node2):
 for pair in g[node1]:
 if pair[0] == node2:
 return pair[1]

Example: Most Popular Person
Now that we have the basics, we can
start problem solving.

Let's write a function that takes a social
network as a graph and returns the
person in the network who has the
most friends.

This is just our typical find-largest-
property algorithm applied to a graph.

def findMostPopular(g):

 biggestCount = 0

 mostPopular = None

 for person in g:

 if len(g[person]) > biggestCount:

 biggestCount = len(g[person])

 mostPopular = person

 return mostPopular

56

Example: Make Invite List
Now let's say a person wants to make
more friends, so they're holding a party.
They want to invite their own friends,
but also anyone who is a friend of one
of their friends.

Now we have to loop over each of the
person's friends, to access that node's
own list of friends.

def makeInviteList(g, person):

 # start with immediate friends

 invite = g[person] + [] # break alias

 for friend in g[person]:

 # find friends-of-friends

 for theirFriend in g[friend]:

 if theirFriend not in invite and \

 theirFriend != person:

 invite.append(theirFriend)

 return invite

57

Activity: friendsInCommon(g, p1, p2)
You do: Given an unweighted graph of a social
network (like in the previous two examples)
and two nodes (people) in the graph, return a
list of the friends that those two people have in
common.

For example, in the graph shown to the right,
calling friendsInCommon on "Jon" and
"Jaime" would return the list ["Tyrion"
].

Hint: start by looping over all the friends of the
first person. Check whether any of them are
also friends of the second person and add them
to a result list if they are.

g = { "Jon" : ["Arya", "Tyrion"],

 "Tyrion" : ["Jaime", "Pod", "Jon"],

 "Arya" : ["Jon"],

 "Jaime" : ["Tyrion", "Brienne"],

 "Brienne" : ["Jaime", "Pod"],

 "Pod" : ["Tyrion", "Brienne", "Jaime"],

 "Ramsay" : []

 }

58

Activity Answer
def friendsInCommon(g, p1, p2):

 common = []

 for friend in g[p1]:

 if friend in g[p2]:

 common.append(friend)

 return common

59

Learning Goals
Use dictionaries when writing and reading code that uses pairs of data

Use binary trees implemented with dictionaries when reading and writing
code

Use graphs implemented as dictionaries when reading and writing simple
algorithms in code

60

	Slide 1: Advanced Programming #3 – Dictionaries, Trees, and Graphs
	Slide 2: Learning Goals
	Slide 3: Data Structures Organize Data
	Slide 4: Dictionaries
	Slide 5: Python Dictionaries Map Keys to Values
	Slide 6: Key-Value Pairs
	Slide 7: Python Dictionaries
	Slide 8: Python Dictionaries – Getting Values
	Slide 9: Python Dictionaries – Adding and Removing
	Slide 10: Python Dictionaries – Search
	Slide 11: Activity: Trace the code
	Slide 12: Activity Answer
	Slide 13: For Loops on Dictionaries
	Slide 14: Activity: countItems(foodCounts)
	Slide 15: Activity Answer
	Slide 16: Coding with Dictionaries
	Slide 17: Coding with Dictionaries – Track Information
	Slide 18: Coding with Dictionaries – Find Most Common
	Slide 19: Coding with Dictionaries – Nested Dictionaries
	Slide 20: Trees
	Slide 21: Trees Hold Hierarchical Data
	Slide 22: Trees are Hierarchical
	Slide 23: Trees are Upside-down
	Slide 24: Trees are Recursive
	Slide 25: Binary Trees
	Slide 26: Activity: Find the Tree Parts
	Slide 27: Activity Answers
	Slide 28: Coding with Trees
	Slide 29: Implementing New Data Structures
	Slide 30: Python Syntax – Trees as Dictionaries
	Slide 31: Simple Example: getChildren(t)
	Slide 32: Use Recursion When Coding with Trees
	Slide 33: Example: countNodes
	Slide 34: Example: countNodes – Different Base Case
	Slide 35: Example: sumNodes(t)
	Slide 36: Activity: listValues
	Slide 37: Activity Answer
	Slide 38: Advanced Example: Family Trees
	Slide 39: Advanced Example: getPastGen
	Slide 40: Graphs
	Slide 41: Graphs are Like More-Connected Trees
	Slide 42: Graphs in the Real World
	Slide 43: Graphs are Made of Nodes and Edges
	Slide 44: Edges Can Have Weights
	Slide 45: Edges Can Have Directions
	Slide 46: Activity: Recognize the Parts
	Slide 47: Activity Answer
	Slide 48: Coding with Graphs
	Slide 49: Represent Graphs in Python with Dictionaries
	Slide 50: Graphs in Python – Unweighted Graphs
	Slide 51: Graphs in Python – Weighted Graphs
	Slide 52: Finding a Graph's Nodes
	Slide 53: Finding a Node's Neighbors
	Slide 54: Finding a Graph's Edges
	Slide 55: Finding an Edge's Weight
	Slide 56: Example: Most Popular Person
	Slide 57: Example: Make Invite List
	Slide 58: Activity: friendsInCommon(g, p1, p2)
	Slide 59: Activity Answer
	Slide 60: Learning Goals

