
#4-1: Top-Down Design
CS SCHOLARS – PROGRAMMING

Hw3 Takeaways
Lots of people haven't finished yet – that's okay! You can keep working on the
assignment this week, up until Thursday at noon.

Range and list indexing: when you have a loop that iterates over indexes for a
list, pay close attention to the range! If it isn't the default range(len(lst)) it
may visit different values than what you expect. Also, remember: to get the last
value of a list you use lst[len(lst)-1], not lst[len(lst)].

Testing code: don't forget to test your code as you go so you can catch small
errors, like rounding incorrectly or forgetting to sort the result! You can always
call the test function in the interpreter, then call the function shown in the
assert to see what it's actually returning.

Final Evaluation on Thursday
We'll do a final evaluation on Thursday during the afternoon session.

You'll complete homework-like problems during the class session. You can
use the slides and online documentation but will need to complete the
problems independently (no collaboration).

This is an opportunity for you to evaluate how much you've learned over
the past four weeks and what you still need to work on.

Learning Goals
Implement and use helper functions in code to break up large problems
into solvable subtasks

Helper Functions
In real life the code you write will be bigger than a single function. You'll often
need to write many functions that work together to solve a larger problem.

We briefly talked about how to call functions from other functions when we first
learned about function definitions and calls. Let's revisit the idea now.

We call a function that solves a subpart of a larger problem a helper function. By
breaking up a large problem into multiple smaller problems and solving those
problems with helper functions, we can make complicated tasks more
approachable.

5

Designing Helper Functions
How can you break a project into helper functions?

Try to identify subtasks that are repeated or are separate from the main
goal. Have one subtask per function to keep things simple. Use these
functions to break down the main function into individual steps.

6

Example: Tic-Tac-Toe
Consider the game tic-tac-toe. It seems simple, but it involves multiple
parts to play through a whole game.

Discuss: what are the subtasks of tic-tac-toe?

7

Breaking down Tic-Tac-Toe
Let's organize our tic-tac-toe game based on four core subtasks:

makeNewBoard(), which constructs and returns the starter board (a 2D list of strings)

showBoard(board), which displays a given board

takeTurn(board, player), which lets the given player ("X" or "O") make a move on the board,
returning the updated board

isGameOver(board), which returns True or False based on whether or not the game is over

We'll build the whole game from scratch, but the most important thing to focus on is how we use the helper
functions in the main code.

8

Start With Assumptions
We'll start by assuming the helper functions already
work. Write a function that calls each helper function in
the appropriate place.

Start by calling makeNewBoard to generate the board.
Display the starting state by calling showBoard.

Use a loop to iterate over every turn in the game.
Alternate a Boolean variable to decide whether it's X's or
O's turn, and call takeTurn on the board and the
appropriate player to decide which move to make. Call
showBoard again each time to show the updated board.

Keep looping until the game is over by checking
isGameOver in the loop condition.

def playGame():

 print("Let's play tic-tac-toe!")

 board = makeNewBoard()

 showBoard(board)

 player1Turn = True

 while not isGameOver(board):

 if player1Turn:

 board = takeTurn(board, "X")

 else:

 board = takeTurn(board, "O")

 showBoard(board)

 player1Turn = not player1Turn

 print("Goodbye!")

9

makeNewBoard and showBoard
makeNewBoard and showBoard are
simple; we can program these using only
the concepts we've already learned.

The board will be a 3x3 2D list with "." for
empty spaces, "X" for player X, and "O"
for player O.

Note that makeNewBoard takes no
parameters and returns a board, whereas
showBoard takes the board and returns
None. They match how we used them
before!

Construct the tic-tac-toe board
def makeNewBoard():
 board = []
 for row in range(3):
 # Add a new row to board
 board.append([".", ".", "."])
 return board

Print the board as a 3x3 grid
def showBoard(board):
 for row in range(3):
 line = ""
 for col in range(3):
 line += board[row][col]
 print(line)

10

takeTurn
takeTurn has the user input the
row and col they want to fill in using
our old friend input. This is also
similar to programs we've written
before!

Check to make sure the row and col
are numbers with isnumeric and
ensure that they select a valid and
unfilled space with if statements.

Keep looping until a valid location is
chosen. Update the board at that
spot, then return the updated board.

Ask the user to input where they want
to go next with row,col position
def takeTurn(board, player):
 while True:
 row = input("Enter a row for " + player + ":")
 col = input("Enter a col for " + player + ":")
 # Make sure it's a number!
 if row.isnumeric() and col.isnumeric():
 row = int(row)
 col = int(col)
 # Make sure its in the grid!
 if 0 <= row < 3 and 0 <= col < 3:
 if board[row][col] == ".":
 board[row][col] = player
 # stop looping when move is made
 return board
 else:
 print("That space isn't open!")
 else:
 print("Not a valid space!")
 else:
 print("That's not a number!")

11

isGameOver needs more helper functions
isGameOver is a bit more complicated. There are
multiple scenarios where the game can end- if a
player gets three in a row horizontally, or
vertically, or diagonally. The game can also end if
the board is filled.

Use more helper functions to break up the work
into parts! Generate strings holding all
rows/columns/diagonals with horizLines,
vertLines, and diagLines. Check if the board
is already full with isFull.

Now we can write the function assuming these
helpers already work.

True if game is over, False is not
def isGameOver(board):
 if isFull(board):
 return True
 allLines = horizLines(board) + \
 vertLines(board) + \
 diagLines(board)
 for line in allLines:
 if line == "XXX" or \
 line == "OOO":
 return True
 return False

12

isGameOver Helpers
Generate all horizontal lines
def horizLines(board):
 lines = []
 for row in range(3):
 lines.append(board[row][0] + \
 board[row][1] + \
 board[row][2])
 return lines

Generate all vertical lines
def vertLines(board):
 lines = []
 for col in range(3):
 lines.append(board[0][col] + \
 board[1][col] + \
 board[2][col])
 return lines

Generate both diagonal lines
def diagLines(board):
 leftDown = board[0][0] + \
 board[1][1] + \
 board[2][2]
 rightDown = board[0][2] + \
 board[1][1] + \
 board[2][0]
 return [leftDown, rightDown]

Check if the board has no empty spots
def isFull(board):
 for row in range(3):
 for col in range(3):
 if board[row][col] == ".":
 return False
 return True

13

Again, we can create the helper functions
for isGameOver using familiar logic.

Functions Work Together
Put it all together and you've got a fully working Tic-Tac-Toe game!

The most important takeaways are:
◦ Use helper functions to separate out complicated subtasks and make the

overall task easier to represent

◦ Thoughtfully consider which data will need to be passed into each helper
function call so it can find the correct answer

◦ Keep track of which data will be returned by each function call

14

Learning Goals
Implement and use helper functions in code to break up large problems
into solvable subtasks

	Slide 1: #4-1: Top-Down Design
	Slide 2: Hw3 Takeaways
	Slide 3: Final Evaluation on Thursday
	Slide 4: Learning Goals
	Slide 5: Helper Functions
	Slide 6: Designing Helper Functions
	Slide 7: Example: Tic-Tac-Toe
	Slide 8: Breaking down Tic-Tac-Toe
	Slide 9: Start With Assumptions
	Slide 10: makeNewBoard and showBoard
	Slide 11: takeTurn
	Slide 12: isGameOver needs more helper functions
	Slide 13: isGameOver Helpers
	Slide 14: Functions Work Together
	Slide 15: Learning Goals

