
Designing a Data-Driven Tutor Authoring Tool for CS
Educators

Kelly Rivers
Carnegie Mellon University

5000 Forbes Ave.
Pittsburgh, PA, 15213, USA

krivers@cs.cmu.edu

ABSTRACT
Intelligent Tutoring Systems are highly effective at helping
students learn, but have required intensive amounts of
development time in the past, keeping teachers from making their
own. Data-driven tutoring has made it possible to build these
tutors more efficiently. For my thesis work, I intend to build an
authoring tool for data-driven tutors that is designed to be used by
computer science teachers. I plan to design this system based on
data gathered in interviews with CS educators and evaluate it on
its usability for new users.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education.

Keywords
data-driven tutoring, teacher adoption of technology, usability,
intelligent tutoring system authoring tools

1. PROGRAM CONTEXT
I have just completed the fourth year of my PhD program in
Human-Computer Interaction at Carnegie Mellon University. This
program has a primary focus in HCI, but also has a large
contingent of researchers that specialize in the learning sciences,
especially intelligent tutoring systems (ITSs). I have completed all
of my classes and teaching requirements, and I intend to propose
my thesis in late summer/early fall 2015.

In the past four years I have worked with my advisor, Ken
Koedinger, to design and build the Intelligent Teaching Assistant
for Programming (ITAP). This system uses collected student
solutions to automatically generate hints for code-writing
programming problems. I have done a technical evaluation of
ITAP by testing its performance on old student data, and I’ve run
a small lab study to determine how students interact with hints in
a programming editor. For future work, I plan to continue the
development of ITAP, test it empirically with large in-class
studies, and explore the potential for practical tutor development
in the field by designing an authoring tool for teachers.

2. CONTEXT AND MOTIVATION
Writing code is an essential skill that every novice programmer
needs to learn. The process of learning to write code is filled with
many struggles, but students do better when they get help with the
‘insurmountable’ problems, especially when that help arrives
quickly [3]. However, teachers cannot spend every moment of
their time with their studsents helping them get unstuck. Having
an automated source of assistance might, therefore, greatly assist
students who are learning how to program.

ITSs have been shown to be very effective in assisting students,
and have even helped students learn programming more quickly
and thoroughly in the past [1]. However, the time and effort
required to build a tutoring system is prohibitively large, and
almost all of the tutors that have been created so far have been
made by research groups or companies, not teachers [4]. Perhaps
this is why ITSs have not been widely adopted in introductory
programming classes, despite their great potential.

My advisor and I have designed ITAP, a new kind of intelligent
tutoring system for programming which can generate hints
automatically for students in open-ended code writing
environments [8]. This system has the potential to assist students
who are working on practice problems, and can help students get
‘un-stuck’ by giving them next-step hints that move them closer to
a correct state. It can also be used to generate tutored problems
rapidly with little author input needed. Now that we have
developed ITAP to the point that it is usable in real classroom
settings, we want to determine whether it can be used to help
teachers extend the amount of automated support provided in their
classrooms.

3. BACKGROUND & RELATED WORK
Data-driven tutoring for programming has been expanding as a
subfield of intelligent tutoring systems over the past few years,
with many different researchers creating new techniques to
automatically generate hints. However, most of the systems
(including ours) have only been evaluated on collected student
problem-solving traces, and the ones that are being tested on real
students are implemented in online learning environments such as
MOOCs [6,7], not in individual classrooms.

In the broader field of ITS authoring by teachers, there have been
a few attempts to make tutor authoring more accessible. The
introduction of authoring by demonstration made GUI tutor
authoring take drastically less time than before [5], and more
structured content provision editors made it easier for teachers to
create new items for language-learning systems [2]. There do not

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
ICER '15, August 09-13, 2015, Omaha, NE, USA
ACM 978-1-4503-3630-7/15/08.
http://dx.doi.org/10.1145/2787622.2787749

appear to be any studies which have directly evaluated teacher
interest in generating intelligent tutors independently.

4. STATEMENT OF THESIS/PROBLEM
My broad research question is: will CS educators use more
adaptive practice problems in their classes if they have the ability
to create the adaptive content themselves? To address this
question, I will also investigate the following two questions in my
thesis work:

• What do teachers want their practice problems to look like,
and how does this relate to CSED best practices? What kinds
of features do teachers want within programming tutors?

• What are the usability concerns that need to be considered
when designing a tutor authoring tool for teachers?

5. RESEARCH GOALS & METHODS
For my thesis work, I plan to pursue three primary research
phases. The first research phase will address the question of what
needs teachers actually have, and what features they require in
their own tutored problems. To understand this, I plan to do
interviews with CS educators to understand what kinds of
educational technology they currently use and whether/how they
assign practice work for their students to complete. I also plan to
distribute surveys in order to establish a broader understanding of
the needs of the population. The result of this phase should be a
list of needs and wants, and a description of the current state of
the field of practice problems in introductory computer science.

The second phase will involve the implementation of the data-
driven tutor authoring tool. In this phase, I intend to take the
current ITAP system and embed it in a web interface, and design a
system that lets teachers input problem data and modify the
resulting tutor’s behavior. The system should be designed based
on the expressed needs of the teachers (from Phase 1).
Throughout the design process, I intend to test prototypes of the
system with CS educators, to ensure that the authoring tool is
progressing as expected. The result of this phase will be a
functional authoring tool.

The third and final phase will involve a usability evaluation of the
authoring tool. I will ask CS educators to create their own tutored
problems in a lab environment, to study how they create
problems, whether they have any difficulties, and which parts of
the system are used the most. I will ask the educators to use the
resulting problems in their classrooms, and will collect data on
how many of the resulting tutored problems are actually accessed
by students, and how much time the students spend solving
problems in the system. The result of this will be an evaluation of
the usability of the system, both in terms of system usability for
tutor creation and the usability of the tutored problems that are
developed.

6. DISSERTATION STATUS
As was stated before, I have spent most of my research program
up until now implementing ITAP, a system which allows data-
driven creation of programming tutors. ITAP will form the
backend of this project, as it makes it possible for teachers to
create tutored problems quickly and efficiently. My recent work
has been focused on making ITAP work reliably and well, even
when given little data to start with, to reduce the amount of work
tutor authors would need to do to create tutored problems. I have
also been establishing connections with CS educators across many

different universities, and many of these educators have expressed
interest in using ITAP; I hope to build a subject pool that extends
beyond my own university with the help of these connections.

7. EXPECTED CONTRIBUTIONS
At the conclusion of my thesis work, I plan to have developed an
online authoring tool that will have been proven to be both usable
and effective, a tool which teachers can easily use to generate
tutored problems personalized to their curricula. My hope is that
making such a tool open-access and publicized across the CS
education community could make more CS teachers aware of the
potential intelligent tutoring systems have for improving student
learning. It is difficult to say now how effective these tutored
problems will be (we hope to determine in the near future whether
ITAP improves learning outcomes in a classroom setting), but at
least they could potentially reduce student frustration, and maybe
make practice a more enjoyable experience for students in
introductory programming courses everywhere.

8. ACKNOWLEDGEMENTS
This work was supported in part by Graduate Training Grant
awarded to Carnegie Mellon University by the Department of
Education (# R305B090023).

9. REFERENCES
[1] Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill

acquisition and the LISP tutor. Cognitive Science, 13(4),
467-505.

[2] Brusilovsky, P., Knapp, J., & Gamper, J. (2006). Supporting
teachers as content authors in intelligent educational
systems. International Journal of Knowledge and
Learning, 2(3), 191-215.

[3] Carter, J., Dewan, P., & Pichiliani, M. (2015). Towards
Incremental Separation of Surmountable and Insurmountable
Programming Difficulties. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education (pp.
241-246).

[4] Folsom-Kovarik, J. T., Schatz, S., & Nicholson, D. (2010).
Plan ahead: Pricing ITS learner models. In Proceedings of
the 19th Behavior Representation in Modeling & Simulation
(BRIMS) Conference (pp. 47-54).

[5] Koedinger, K. R., Aleven, V., Heffernan. T., McLaren, B. &
Hockenberry, M. (2004). Opening the Door to Non-
Programmers: Authoring Intelligent Tutor Behavior by
Demonstration. In the Proceedings of 7th Annual Intelligent
Tutoring Systems Conference (pp. 162-174).

[6] Perelman, D., Gulwani, S. & Grossman, D. (2014). Test-
Driven Synthesis for Automated Feedback for Introductory
Computer Science Assignments. In Data Mining for
Educational Assessment and Feedback (ASSESS 2014).

[7] Piech, C., Sahami, M., Huang, J., & Guibas, L. (2015).
Autonomously Generating Hints by Inferring Problem
Solving Policies. In Proceedings of the Second (2015) ACM
Conference on Learning@Scale (pp. 195-204).

[8] Rivers, K., and Koedinger, K. (2013). Automatic Generation
of Programming Feedback: A Data-Driven Approach.
In Proceedings of the Workshops at the 16th International
Conference on Artificial Intelligence in Education AIED
2013 (pp. 4.50-4.59).

