
Companion Proceedings 9th International Conference on Learning Analytics & Knowledge (LAK19) 

1 

Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) 

 

ProgSnap2: A Flexible Format for Programming Process Data 

Thomas W. Price1, David Hovemeyer2, Kelly Rivers3, Austin Cory Bart4,  
Andrew Petersen5, Brett A. Becker6, Jason Lefever2 

1North Carolina State University, 2York College of Pennsylvania, 3Carnegie Mellon University, 
4University of Delaware, 5University of Toronto, 6University College Dublin 

twprice@ncsu.edu, dhovemey@ycp.edu, krivers@andrew.cmu.edu, acbart@udel.edu, 
petersen@cs.toronto.edu, brett.becker@ucd.ie, jlefever@ycp.edu 

ABSTRACT: In this paper, we introduce ProgSnap2, a standardized format for logging programming 
process data. The goal of this common format is to encourage collaboration among 
researchers by helping them to share data, analysis code, and data-driven tools to support 
students. We first highlight possible use cases for ProgSnap2 and give a high-level overview 
of the format. We then share two case studies of our experience using the format and 
outline goals for the future of ProgSnap2, including a call for collaboration with interested 
researchers. 

Keywords: programming process data, data standards, data sharing, learning analytics 

1 INTRODUCTION 

Analysis of programming process data, logged as students complete programming tasks, has 

furthered the field of computing education research in many ways, including identifying common 

programming errors (Brown & Altadmri, 2014a) and detecting plagiarism (Hellas et al., 2017). 

However, there are few common standards for how such data should be collected, represented, or 

shared, making it more difficult for researchers to collaborate, replicate findings, and share tools. 

Initiatives such as the PSLC Datashop (Koedinger et al., 2010) provide a common data format and 

tools to store, analyze, and share generic educational data. However, programming datasets have a 

number of distinct, domain-specific features, which make it difficult to use generic formats. 

Programming datasets may track entire projects with multiple files, and interpreting them often 

requires specific metadata, such as the version of the IDE or compiler. Programming data collection 

tools, such as BlackBox (Brown et al., 2014b) and CloudCoder (Papancea et al., 2013), have 

addressed this problem by defining their own data formats, but these are system-specific and not 

widely adopted. 

In this paper, we present ProgSnap2: a standardized format for logging programming process data, 

which we have developed and are currently refining. ProgSnap2 builds on the original Progsnap 

format (Hovemeyer et al., 2017)1 by representing a richer set of event data types and using a “flat” 

representation more suitable for direct analysis by statistics software. The goal of ProgSnap2 is to 

support researchers in sharing and analyzing programming process data. The format was designed 

                                                           
1 See the full specification for the original Progsnap at: http://cloudcoderdotorg.github.io/progsnap-spec/  

mailto:twprice@ncsu.edu
mailto:dhovemey@ycp.edu
mailto:krivers@andrew.cmu.edu
mailto:acbart@udel.edu
mailto:petersen@cs.toronto.edu
mailto:brett.becker@ucd.ie
mailto:jlefever@ycp.edu
http://cloudcoderdotorg.github.io/progsnap-spec/


Companion Proceedings 9th International Conference on Learning Analytics & Knowledge (LAK19) 

2 

Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) 

 

to prioritize the needs of both the data producer and the data consumer. For the data producer, our 

goal is to make exporting data straightforward, with a default structure to encourage best practices 

(e.g. what to log and how), a small set of required elements, and extensibility to support a variety of 

datasets. For the data consumer, our goal is to make importing and analyzing data straightforward, 

while making explicit how the data were logged, and any caveats or oddities that might impact 

analysis. 

We see three primary use cases for the ProgSnap2 format. 1) Sharing Data: There is a high cost to 

sharing unstandardized data. Both parties must invest time for the consumer to understand and 

parse the new format. A common format lowers these barriers, while improving the quality of new 

and existing logging systems by defining a standard set of events and attributes to log. Efforts to 

standardize the format and storage of learning data in other domains have led to datasets and 

research efforts that spanned multiple researchers and institutions (Koedingr et al., 2010). 2) 

Sharing Analysis Code: A common format also allows researchers to write analysis code that can be 

shared and reused on new datasets that have the same format. This enables researchers to 

collaborate, even when sharing data is not possible (e.g. for privacy reasons). Publishing analysis 

code can also increase the replicability of computing education research and encourage the 

development of shared analysis libraries. For example, many researchers use the Error Quotient 

(Jadud, 2006) to quantify learners' compilation behavior. A shared implementation of the Error 

Quotient, capable of operating on any dataset in the common format, would save effort and ensure 

a consistent definition. 3) Sharing Tools: A number of data-driven tools have been developed to 

support computing classrooms, such as student models (Yudelson et al., 2014) and on-demand hints 

(Rivers and Koedinger 2017; Price et al, 2017). A common input data format would allow these tools 

to be more easily shared, reused, and composed together. This raises the possibility of publishing 

these tools as services that any researcher can utilize, for example allowing any programming 

environment to employ an adaptive student model by sending its data to the appropriate service. 

2 PROGSNAP2 

A ProgSnap22 dataset consists of logs and relevant data that capture how users interacted with a 

programming or learning environment. A dataset includes a main event table, a metadata table and 

optional link tables to reference outside resources, all represented as CSV files. A dataset also 

contains a code repository containing sequential snapshots of students' code and optional auxiliary 

resources (e.g. assignment descriptions). We chose to define most elements of the dataset as 

directly parsable CSV files, rather than using a database, with the goal of making analysis as 

straightforward as possible. 

2.1 Main Event Table 

The central component of a dataset is the main event table, which represents a collection of events 

that took place in the programming environment. These events can represent both fine-grained 

interactions, such as individual keystrokes, and high-level actions, such as entire problem attempts, 

                                                           
2 The full specification for ProgSnap2 is available at: http://bit.ly/ProgSnap2 

http://bit.ly/ProgSnap2


Companion Proceedings 9th International Conference on Learning Analytics & Knowledge (LAK19) 

3 

Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) 

 

depending on the granularity of the logging system. Each row in the table represents one event, and 

each column represents an event property. ProgSnap2 defines a small set of mandatory columns: 

● EventType: an enumeration value indicating the type of event; examples include 

“Session.Start”, “File.Edit”, “Compile”, “Compile.Error”, “Submit”, and “Run.Program” 

● EventID: the unique ID of the event 

● Order: the chronological ordering of the event compared to others (may be approximate) 

● SubjectID: the ID of the human subject (or group) associated with the event 

● Toolnstances: a string indicating the names and versions of tools associated with the event 

● CodeStateID: the ID of a snapshot of the source code and resources when the event 

occurred 

ProgSnap2 also defines a variety of optional columns with standard names. Some columns may not 

apply to all datasets (e.g. CourseID) and can be omitted. Others apply to a specific subset of events, 

and can be included for only these events (e.g. CompileMessageType is only appropriate for 

“Compile.Error” events), creating a sparse table. Data producers are encouraged to include as many 

optional columns and as much detail as possible. They can also define new columns when needed. 

Examples of optional columns include: 

● ParentEventID: the EventID of a “parent” event, to represent causal relationships; for 

example, a “Compile.Error” event would typically have a “Compile” event as its parent 

● TermID, CourseID, CourseSectionID, AssignmentID, ProblemID: these provide contextual 

information for the associated event, which may be found in a "Link Table" (described 

below) 

● EditType, EditTrigger, CodeStateSection: these respectively describe how code was edited 

(e.g. typing, paste, undo), the reason it was recorded, and where the edit took place 

● ProgramInput, ProgramOutput, CompileMessageType, CompileMessageData: these record 

relevant information about how the code was compiled and run 

● ExperimentalCondition, InterventionType, InterventionMessage: these record data about 

experimental conditions and interventions used in research studies 

2.2 Metadata, Link Tables and Resources 

The Dataset Metadata is a mandatory CSV file specifying the global properties of the dataset as 

key/value pairs. Currently, only a few global properties are defined, including the ProgSnap2 version 

number, whether event ordering is known, and which code state representation is used. Link Tables 

are optional files used to associate contextual ID values (or combinations of IDs) with a resource 

(defined below) providing more information. For example, a link table could associate a 

TermID/CourseID pair with the URL of a course website for that course and term. AAnother optional 

file, a Resource, is an arbitrary data blob,  identified by a URL in a Link Table, which can be either 

external (accessed via the internet) or internal (local to the dataset). As with Link Tables, the 

inclusion of Resources is optional but encouraged. Where possible, we also encourage data 

producers to use internal resources (e.g. saving a static version of the course website in the example 

above) to ensure they are not lost or changed. 



Companion Proceedings 9th International Conference on Learning Analytics & Knowledge (LAK19) 

4 

Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) 

 

 

Figure 1: A diagram of the ProgSnap2 Format. Lines connect Enum types to their possible values,  

files to their respective tables, and IDs to their definitions in the Main Event Table. 

 



Companion Proceedings 9th International Conference on Learning Analytics & Knowledge (LAK19) 

5 

Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) 

 

2.3 Code State Representations 

ProgSnap2 is intended to represent data from a variety of programming activities, from single-

function exercises to complex final projects to block-based programs. To capture this diverse data, 

ProgSnap2 supports three source code representations: Git, Directory, and Table. This choice allows 

data producers to use the most appropriate representation, while constraining that choice to 

formats which are easily processed. Each format maps a CodeStateID value to a code state, which is 

simply a collection of one or more files with an optional directory structure. In the Git format, code 

states are represented as commits in a Git3 repository stored within the dataset. This format is 

appropriate for datasets where code states may consist of a relatively large number of files. In the 

Directory format, each CodeStateID maps to the name of a directory stored within the dataset which 

contains a collection of all files that are part of the code state. This format is appropriate for datasets 

where code states contain a small number of files. In the Table format, a dedicated CSV file maps 

CodeStateID values to text strings. This format is only appropriate for datasets where each code 

state consists of a single text file, and where the amount of data per code state is small. 

3 CASE STUDIES 

To explore and evaluate the standard, we implemented ProgSnap2 data exporters for two open 

source autograding systems, Virtual Programming Lab (VPL)4 and CloudCoder (Papancea et al., 

2013). 

Virtual Programming Lab (VPL): As learners make submissions and receive feedback, the VPL 

maintains a downloadable log stored as a zip file of directories, with each directory representing one 

student. These directories contain a timestamped series of paired folders representing student code 

submissions and their associated compilation information. Our tool5 consumes these logs and 

produces ProgSnap2 compliant archives. During conversion, each submission is decomposed into a 

sequence of events (“Submission”, “Compile”, “Compile.Error”, etc.). Each event is assigned a 

numerically ascending, unique Event ID, and necessary fields are assigned, such as the Server 

Timestamp, Event Type, and event-specific data like the code for a “Submission” event or the 

compiler’s output during a “Compile.Error” event.  

We faced a few challenges during development, such as mapping VPL’s data to ProgSnap2 events. 

For example, a number of event types relate to compilation. Given that Python is not truly 

“compiled”, should we use a “Compile” event or a “Run.Program” event? When students run their 

code and receive autograder feedback, would a “Run.Test” event be appropriate, since autograding 

is more than just unit testing? If there is an error, VPL will still offer feedback to the student. Is this 

an “Intervention” or just the “ProgramResult”? When a Grade is assigned, is that also an 

“Intervention,” or does the standard need a new Event Type? Most of these challenges were easily 

resolved, though some led to ongoing conversations that may be settled as we develop other 

conversion tools. 

                                                           
3Standard libraries for extracting a commit from a Git repository (git-scm.com) can be found at libgit2.org 
4 http://vpl.dis.ulpgc.es/ 
5 Source code for the tool is available at: https://github.com/CSSPLICE/progsnap2 

https://git-scm.com/
https://libgit2.org/
https://github.com/CSSPLICE/progsnap2


Companion Proceedings 9th International Conference on Learning Analytics & Knowledge (LAK19) 

6 

Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) 

 

CloudCoder: Exporting CloudCoder data to the ProgSnap2 format was fairly straightforward and 

mostly involved mapping CloudCoder's internal event representation to that of ProgSnap2. One 

challenge we encountered is that a single CloudCoder event can yield multiple ProgSnap2 events in 

some cases. To address this, the CloudCoder event IDs are multiplied by a constant to create a gap in 

the namespace where multiple derived events can be situated without conflict. We also had 

difficulty defining Session.Start and Session.End events, as CloudCoder does not directly record 

sessions. We considered defining them based on how much time elapsed between recorded 

CloudCoder events, but eventually decided to omit them. We felt it would be more appropriate for 

the data consumer to develop his or her own heuristics to reconstruct sessions during analysis. 

4 FUTURE WORK AND CALL FOR COLLABORATION 

We are currently working to refine ProgSnap2 by exporting datasets from additional programming 

environments, including PCRS (Zingaro et al., 2013) and iSnap (Price et al., 2017). However, our 

primary goal for the format is to facilitate collaboration through the sharing of data, analysis code, 

and data-driven tools. We plan to evaluate the utility of ProgSnap2 through these efforts, and we 

invite researchers interested in sharing programming data for collaboration to contact the authors. 

5 REFERENCES 

Brown, N. C. C., & Altadmri, A. (2014a). Investigating Novice Programming Mistakes: Educator Beliefs 

vs Student Data. In Proceedings of the Tenth International Computing Education Research 

Conference (pp. 43–50). https://doi.org/10.1145/2632320.2632343 

Brown, N. C. C., Kölling, M., McCall, D., & Utting, I. (2014b). Blackbox: A Large Scale Repository of 

Novice Programmers’ Activity. In Proceedings of the ACM Technical Symposium on 

Computer Science Education (pp. 223–228). https://doi.org/10.1145/2538862.2538924 

Hellas, A., Leinonen, J., & Ihantola, P. (2017). Plagiarism in Take-home Exams : Help-seeking , 

Collaboration , and Systematic Cheating. In Proceedings of the Annual Conference on 

Innovation and Technology in Computer Science Education (pp. 238–243). 

https://doi.org/10.1145/3059009.3059065 

Hovemeyer, D., Hellas, A., Petersen, A., & Spacco, J. (2017). Progsnap: Sharing Programming 

Snapshots for Research. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on 

Computer Science Education (p. 709). 

Jadud, M. C. (2006). Methods and tools for exploring novice compilation behaviour. In Proceedings 

of the Third International Workshop on Computing Education Research (pp. 73–84). 

https://doi.org/10.1145/1151588.1151600 

Koedinger, K. R., Baker, R. S. J., Cunningham, K., & Skogsholm, A. (2010). A Data Repository for the 

EDM community: The PSLC DataShop. In C. Romero, S. Ventura, M. Pechenizkiy, & R. Sj. 

Baker (Eds.), Handbook of Educational Data Mining (pp. 43–55). CRC Press. 

https://doi.org/doi:10.1201/b10274-6 

Papancea, A., Spacco, J., & Hovemeyer, D. (2013). An Open Platform for Managing Short 

Programming Exercises. In Proceedings of the Ninth Annual International ACM Conference 

on International Computing Education Research (pp. 47–52). New York, NY, USA: ACM. 

https://doi.org/10.1145/2493394.2493401 



Companion Proceedings 9th International Conference on Learning Analytics & Knowledge (LAK19) 

7 

Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) 

 

Price, T. W., Dong, Y., & Lipovac, D. (2017). iSnap: Towards Intelligent Tutoring in Novice 

Programming Environments. In Proceedings of the ACM Technical Symposium on Computer 

Science Education. 

Price, T. W., Zhi, R., & Barnes, T. (2017). Evaluation of a Data-driven Feedback Algorithm for Open-

ended Programming. In Proceedings of the International Conference on Educational Data 

Mining. 

Rivers, K., & Koedinger, K. R. (2017). Data-Driven Hint Generation in Vast Solution Spaces: a Self-

Improving Python Programming Tutor. International Journal of Artificial Intelligence in 

Education, 27(1), 37–64. Retrieved from http://link.springer.com/10.1007/s40593-015-

0070-z 

Yudelson, M., Hosseini, R., Vihavainen, A., & Brusilovsky, P. (2014). Investigating Automated Student 

Modeling in a Java MOOC. In Proceedings of the International Conference on Educational 

Data Mining (pp. 261–264). 

Zingaro, D., Cherenkova, Y., Karpova, O., & Petersen, A. (2013). Facilitating Code-writing in PI 

Classes. In Proceeding of the 44th ACM Technical Symposium on Computer Science 

Education (pp. 585–590). https://doi.org/10.1145/2445196.2445369 


