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Abstract 
The recent surge in interest in using educational data mining on 
student written programs has led to discoveries about which 
compiler errors students encounter while they are learning how to 
program. However, less attention has been paid to the actual code 
that students produce. In this paper, we investigate programming 
data by using learning curve analysis to determine which 
programming elements students struggle with the most when 
learning in Python. Our analysis extends the traditional use of 
learning curve analysis to include less structured data, and also 
reveals new possibilities for when to teach students new 
programming concepts. One particular discovery is that while we 
find evidence of student learning in some cases (for example, in 
function definitions and comparisons), there are other 
programming elements which do not demonstrate typical learning. 
 In those cases, we discuss how further changes to the model 
could affect both demonstrated learning and our understanding of 
the different concepts that students learn. 

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education – Computer Science Education 

Keywords 
learning curve analysis; educational data mining; programming 
syntax; knowledge components 

1. Introduction 
In recent years there has been growing interest in using large 
collections of logged programming data to understand how 
students learn, what they struggle with, and what we can do to 
improve computer science education. This trend is occurring at 
the same time as a rise in the use of Educational Data Mining 
(EDM) [2], a field of study which has developed many useful new 
approaches for analyzing and interpreting collected student data. 
However, the majority of research done on programming data has 
only used metric approaches that cover easily measurable content, 
such as the compiler errors students encounter and their typical 
working behaviors [10]. These studies have taught us a great deal 
about how students write code, but they have mostly examined the 
output of code, instead of investigating how the code that students 

write changes over time. It is possible that, by ignoring the written 
code that students produce, we are missing out on a great deal of 
useful information. 
The broader field of EDM investigates how details of student 
work can be used to determine what and how students are 
learning. Leveraging theories about the ideal shape of learning 
[14] and the structure of student knowledge [13], researchers in 
this space have developed methods for tracking student learning 
of knowledge components across multiple problems [4, 6], to see 
if students’ ability to solve problem steps associated with 
particular concepts matches what theory would predict. 
Discrepancies between theory’s predictions and students’ 
behaviors can be used to suggest improvements to instruction that 
result in demonstrably better student learning [20]. These 
techniques have been successful in structured environments such 
as intelligent tutoring systems and have demonstrated 
applicability to many fields such as mathematics, vocabulary, and 
chemistry; however, with a few notable exceptions [1], they have 
seen less application in domains like programming. 

In this work, we present a preliminary exploration of the 
application of knowledge-based learning curve analysis on 
programming data with the goal of extending the promise of 
educational data mining to programming. As this is, to our 
knowledge, the first attempt to apply learning curve analysis to 
programming data, our research questions are the following: can 
we successfully apply the methods of knowledge component 
modeling and learning curve analysis to code-writing 
programming data, and can we use the resulting models to 
evaluate student learning? In order to address these goals, we 
must first determine which individual concepts students might be 
struggling with. In this paper, we discuss multiple possible models 
of programming knowledge components, describe how we 
modified the traditional modeling process to be compatible with 
programming data, and analyze the resulting models, sharing our 
thoughts on the process along the way. 
The contributions of this paper are: 

• A modification to the traditional method of knowledge 
component modeling, to be used with code-writing data. 

• Learning curves computed using real student data and 
categorizations of different syntax-based programming 
concepts based on these curves. 

• Recommendations on future directions for knowledge modeling 
and learning curve analysis in the domain of programming. 

2. Background 
The work we present in this paper is rooted in the context of the 
Knowledge-Learning-Instruction (KLI) framework [13]. The KLI 
framework is concerned with providing a vocabulary for 
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exploring how different types of knowledge constrain learning 
processes and in turn how different learning processes constrain 
which instructional choices will be optimal for robust student 
learning. Central to the broader theory of KLI is the concept of a 
Knowledge Component (KC) which is defined as “an acquired 
unit of cognitive function or structure that can be inferred from 
performance on a set of related tasks.” As learners are provided 
with instructional events for a particular KC it becomes more 
likely that they will demonstrate mastery of that KC when later 
assessed. This might seem straightforward, but it can be 
challenging to rigorously define what the KCs in a given domain 
are, and from there decide how best to structure the instructional 
environment to support those particular KCs. 

On the other hand, most EDM research into programming data so 
far has focused on high level performance metrics and errors, 
instead of looking at how student code changes over time. 
However, there have been some exceptions. Several researchers 
have investigated the use of interaction networks as a way to 
interpret student work on a programming problem over time. This 
includes work on Parsons problems [7], Karel programs [16], and 
Java assignments [8]. These approaches tell us a great deal about 
how students develop their programs over time, but they do not 
separate out different knowledge concepts that can be investigated 
individually. 

Some researchers have applied other EDM methods to 
programming data. Berges and Hubweiser used Item Response 
Theory (IRT) to compare the difficulty of different programming 
concepts, using concepts tagged on source code written by the 
students [3]. Kasurinen and Nikula applied Bayesian Knowledge 
Tracing (BKT) to programming data by predicting whether 
students would apply the correct structure to their code answers 
across sets of questions and found that about half of their students 
were predicted to have reached mastery on five central concepts 
by the end of their course [11]. 

In work closer to our own, Cherenkova et al. mapped problems to 
the concepts they were designed to test and used student success 
(on first attempt) to determine which concepts students were most 
challenged by [5]. They identified conditionals and loops as being 
particularly challenging for students. Yudelson et al. built student 
models based on code submissions over time, using the Rasch 
model and variations on the Additive Factors Model (AFM) [22]. 
Their process has many similarities to ours, but focuses on the 
question of how best to model students instead of investigating 
which specific concepts students are struggling with. 

2.1 Learning Curve Analysis 
Inspired by the power law of practice [14], learning curve analysis 
is an approach from broader EDM research that focuses on 
estimating learners’ performance over time [4]. The learning 
theory behind the approach is that the probability that a learner 
would make an error in exercising a given skill should decrease 
over time as they get more opportunities to practice the skill. 
Traditionally, skills in this context are formalized as KCs, with a 
given task exercising one or more KCs. Students who possess a 
mastery of those KCs are more likely to perform the task 
correctly. 

From a statistical perspective, learning curves are fit to student 
performance data using the Additive Factors Model (AFM) [4]. 
AFM is a specialized form of logistic regression that uses 
information about a student’s prior practice opportunities with a 
set of KCs to predict the probability that they will perform 

correctly on a given opportunity. The mathematical formulation of 
AFM’s regression equation takes the following form: 

 
This equation says that the log odds of a given student i 
performing step j, which exercises KC k, correctly can be 
predicted by a combination of an intercept for the student θi, an 
intercept for the KC βk, and a KC slope γk., where Nik represents a 
count of how many prior opportunities student i has had to 
practice KC k and Qkj is a binary Q-matrix defining the mapping 
between KCs and steps.  

The general assumptions of the AFM model are that every student 
possesses individual differences in initial ability, represented by 
the student intercept; every KC has a different initial difficulty, 
represented by the KC intercept; and that everyone tends to master 
a given KC at the same rate, represented by a single KC slope for 
all learners. In the most commonly used implementation of AFM 
[12] there is a fourth constraint imposed, not noted in the 
regression equation, where KC slopes cannot be negative 
(meaning that people do not unlearn or forget KCs). 

3. Methodology 
Before applying learning curve analysis to programming data we 
must first answer a few questions about how to adapt the usual 
methods to the unique properties of the programming domain. 
This is more difficult than it may at first sound, due to differences 
in the format of data traditionally used in learning curve analysis 
and the kind of data generated by programming tasks. 

In the tutoring systems traditionally evaluated with learning 
curves, problems are broken down into individual steps, where a 
step is conventionally defined as the smallest unit of action that a 
student can perform correctly [21]. In programming data, there is 
no such definition of what a step should be. Programming data 
can be collected at as low a level as every keystroke made by 
students, but it is unclear how correctness could be measured for 
these low-level edits. Alternatively, data can be collected on 
student submissions and help requests; these submissions can be 
measured for correctness (using suites of test cases), but they also 
encompass many individual edits that have been made to the code. 

In intelligent tutors, each problem’s steps are tagged with one or 
more KCs at time of analysis. Since each step can be individually 
measured for correctness, each of the KCs can be analyzed for 
changes in correctness over time, to see whether students are 
learning. The analogy between tutor steps and submissions breaks 
down here, as failing test cases in a programming submission does 
not mean that every component of the code is wrong; it only 
means that a subset of the components are wrong. Therefore, we 
need to define a way to represent steps in programming problems 
that allows us to do useful data analysis. 

To accomplish this, we address the following questions in the next 
sections: 

• What are the KCs of programming? 

• What are the steps and opportunities in a programming 
problem? 

• How should correctness be measured for each of these steps? 

3.1 Programming KCs 
In order to model learners’ acquisition of programming KCs, we 
first need to determine what the KCs of programming are, so that 



we can construct a KC model that will accurately reflect student 
performance on programming tasks. In a broader sense this 
question has been a point of interest in the Computer Science 
Education Research community for many years, as many 
researchers have attempted to discover what the low-level 
concepts students are learning actually are. 
First, one could view a programming problem as a set of 
constraints that the program needs to fulfill. These constraints can 
take the form of subproblems and/or test cases, which can all be 
individually assessed to see whether their requirements have been 
met. This model is a direct analogy to the step model typically 
used in tutoring systems. However, the subproblems and test cases 
are not themselves KCs, as we do not want students to learn how 
to solve specific test cases; we want them to learn how to write 
code that can be used to solve test cases like the ones assigned. 
Therefore, we still need to map these subproblems to sets of KCs. 

Instead of using constraints, one could view programs through a 
broader algorithmic lens. From this perspective, students combine 
programming plans (common code substructures) in order to solve 
problems [19]. This approach has great potential as an accurate 
measure of student knowledge, but it assumes that students 
already understand the syntax of the programs they are writing, 
which is not always the case with novices. As we are investigating 
the work of new programmers in this paper, we leave algorithmic 
KC models for future work. 

When considering the structure of knowledge in the programming 
domain, programming skill could be characterized as learning to 
choose the right program constructs (or combinations of 
constructs) in the appropriate circumstances for a specific goal. 
These can be represented as condition-and-response pairs, where a 
condition is the action that needs to be done and the response is 
the program token (or tokens) that can be used to execute that 
action. For example, if a student needs to store a value, they have 
to use the variable assignment operation. As a simplifying 
assumption, we could use the different textual tokens that appear 
in programs as indicators of construct use; additionally, if we can 
parse student code into Abstract Syntax Trees (ASTs), we can 
identify exactly when and where specific constructs are being 
used by walking the tree to find different node types. In this paper 
we utilize these AST node types to test whether this theory of 
programming knowledge as the ability to identify the correct 
conditions and provide the correct responses is an accurate model 
of programming KCs.  

This approach still leaves some questions about implementation; 
for example, should each AST node type be treated as an 
individual KC, or should some tokens be collapsed together into 
broader categories? As a first step towards exploring this 
approach we decided to use a strategy that would include every 
token type in the built-in Python AST library. Once an initial 
candidate KC model has been created, it is common practice in 
learning curve analysis to explore various model refinements of 
merging more fine grained models, using both automated [4] and 
manual [20] methods; we plan to undertake this refinement in 
future work. These methods may help us determine how to change 
the original AST node types into KCs that are closer to the true 
knowledge that students are learning. 

3.2 Programming Steps and Opportunities 
A ‘step’ is hard to define in a generative context where students 
can do a lot of typing at once. For now, we choose to define a step 
at the level of a student’s deliberate action, whenever they submit 
a program or ask for a hint. However, we cannot use the 

submission process as a single opportunity for all of the problem’s 
KCs, since it implies that all KCs are required to be concurrently 
present in order for a student to solve a given submission 
correctly. While this is an accurate description of how the 
programming tutor provides feedback to students, it makes it 
difficult to tease apart which KCs students are struggling with 
most when they get a submission incorrect. Therefore, we say 
instead that each submission/hint request can be viewed as a 
single step that encompasses a sequence of opportunities in 
parallel, where each opportunity corresponds to an individual KC. 

In traditional learning curve analysis, only the first attempt at each 
KC opportunity is used to measure student learning. This is done 
because traditional systems give students immediate feedback on 
each individual step. This means that after the first attempt, 
correctly solving a step does not necessarily mean that a student 
understands how to perform the step correctly; it could be that 
they are only doing what the feedback told them to, with no 
further comprehension. Programming problems seem different, as 
students are given feedback on the whole problem, not the 
individual tokens they’re writing. Still, it is possible that student 
might be applying the feedback to individual tokens. Therefore, 
we test two different kinds of KC step models: one which includes 
only data from the first attempt to each problem (where only the 
first submission of each session with a problem is counted in 
fitting learning curves), and one which includes all student 
submissions to the same problem. We call these two step-models 
First-Attempt and All-Attempts. 

3.3 Step Correctness 
The final question we must answer is how to determine if a 
particular application of a programming KC was done correctly. 
Since we are using AST node types as KCs, we can evaluate the 
correctness of each KC opportunity by determining whether that 
node has been used correctly in the student’s code. We define 
‘correct use’ as follows: a) that the node occurs in the program, 
and b) that the node does not occur in the computed difference 
between the program and a correct version of the program, as 
generated by the ITAP algorithm [17]. In other words, an AST 
node type must be included in the correct portion of a student’s 
code to be measured as correct. For a given opportunity, we 
explore two alternative approaches to measuring correctness. 
First, we could say that every KC opportunity must be evaluated 
in every attempt. In that case: 
• If the KC occurs in the edit between the student’s solution and 

the goal solution, it is INCORRECT 

• If the KC is missing from the student’s solution and this is the 
student’s last (measured) attempt at that problem, it is 
INCORRECT 

• Otherwise, it is CORRECT 
Alternatively, we can say that all KC opportunities are evaluated 
in the first attempt, but in following submissions we only look at 
opportunities which changed after the previous attempt. Then: 

• If the KC occurs in the edit between the student’s solution and 
the goal solution, it is INCORRECT 

• If the KC occurs in the edit between previous and current state 
(or if this is the first attempt), it is CORRECT 

• If the KC is missing from the student’s solution and this is the 
student’s last attempt at the problem, it is INCORRECT 

• Otherwise, it is skipped for this step 



Overall, we have a 2x2 variation structure with four KC models 
which we propose to build, as is shown in Table 1. We can think 
of the First-Attempts/Modified-Steps model as being closest to 
traditional KC models, and the All-Attempts/All-Steps model as 
providing the most data possible. We can compare these KC 
models to determine which provides the best learning curves, 
which we can then use to analyze student work and see what they 
understand and what they struggle with. 

Table 1: The four KC models proposed in method 
modification. 

First-Attempt/Modified-Steps All-Attempts/Modified-Steps 

First-Attempt/All-Steps All-Attempts/All-Steps 

 

4. Analysis 
Now that we’ve hypothesized possible KC models, we need to 
test them with real student data to see whether they can produce 
viable learning curves. In the following sections, we describe how 
we generated the four models and prepared them for statistical 
analysis. 

4.1 Dataset 
The data we use comes from a study run in Spring 2016 on two 
introductory programming courses at Carnegie Mellon University. 
In this study, students were given access to an instance of 
Cloudcoder [15], an online IDE, which contained 40 Python 
programming practice problems covering a range of topics, 
including basic function structure, expression operations, 
conditionals, loops, lists, dictionaries, and recursion. Each practice 
problem had a Submit button which could be used to test the 
student’s work against a collection of test cases, which would 
immediately showing the student the results. Students also 
sometimes had access to a Hint button which, when pressed, 
would generate a next-step hint for them based on the ITAP 
algorithm [18]. The study design randomized when students had 
access to the hint button, so that half of the students had access 
from weeks 1-3 of the study and the other half had access from 
weeks 4-6. All students could access the Hint button from weeks 
7+. 

We have not yet described how hint attempts would be included 
in the model, as they are not a typical component of programming 
log data. In traditional intelligent tutoring systems, hints are 
conventionally counted as an incorrect attempt at whatever KC 
the hint would have pointed the student toward. Therefore, we 
find the edit that was used to construct the hint (where the edit is 
composed of an old code snippet and a new code snippet), and for 
each KC opportunity determine whether the given node type 
occurred in the edit. Nodes which did occur are included as a 
HINT opportunity, while the other nodes are ignored. This 
process can be used across all four KC Model types, as it is a 
direct analogy from traditional ITS models. 

All student use of the practice problems was optional, though 
students were told in class that completing practice problems 
could help them learn more. Out of 692 students in both classes, 
89 agreed to having their data collected and chose to submit an 
answer for at least one programming problem. These 89 students 
made 2907 submissions and 380 hint requests over the course of 
the semester, resulting in a total of 3287 states over all 40 
problems. 

4.2 Model Generation Process 
For each problem, we used Python’s AST library to automatically 
identify all node types that occurred in the exemplar solution of 
the problem. For example, the problem helloWorld (which asked 
students to return the string ‘Hello World!’) contained five main 
AST node types: Module, Function Definition, Arguments, 
Return, and String. This is similar to the approach used in 
JavaParser to identify concepts occurring in Java programs [9]. 48 
unique tokens were identified across all problems, with an average 
of about 11 tokens per problem. 

We sorted the states by timestamp, then generated a solution 
space from all of the states using ITAP’s path construction 
methodology [17]. For each state, we then used the solution space 
to identify the set of edits between the state and the closest goal 
state (for attempt states), or the specific edit that would be 
provided in a hint (for the hint request states). We identified the 
nodes that occurred in these edits and the original states, and the 
edits between original states and previous states by traversing the 
given ASTs. 

For the Modified-Steps method, we generated a set of 
opportunities where opportunity names corresponded to node 
types and correctness depended on the method mentioned above 
(incorrect if node was not in the state or the goal-edit, correct if 
the node was in the state-edit, not included otherwise). For the 
All-Steps model, we used the same process, except that all KCs 
not marked as incorrect were marked as correct. The two models 
generated this way were both First-Attempt models; to generate 
the corresponding All-Attempts models, we went back through 
the steps and re-named them to include the step’s iteration, as was 
described above. This resulted in all four models that we wished 
to test. 

4.3 DataShop 
At this point, we were ready to perform learning curve analysis on 
the KC models. To accomplish this we used DataShop, an online 
data analysis service [12]. In order to upload the models to 
DataShop, we generated files which included the following 
properties: Student ID, Timestamp, Student Response Type, 
Problem Name, Step Name, Outcome, and KC. (KC corresponded 
to the node type for each step, regardless of the used step name; 
the rest of the data was already available). DataShop 
automatically performed AFM on the datasets and generated 
learning curves for the KCs, making it possible for us to move 
directly to analysis of the results. 

5. Results 
Now we can examine the learning curves that resulted from this 
data in order to determine how well our models fit the traditional 
idea of a learning curve, and which KCs students struggle with the 
most. In all of the learning curves that follow, we cut off the 
graphs once the number of students included in each data point 
drops below 9, in order to make sure that at least 10% of our 
population is always represented (and to avoid strange outlier 
behavior). 
First, we want to see what the whole-data-set learning curve 
(which averages the learning curves of all the KCs) looks like for 
each model. If the KC model is accurate, these curves should start 
with a high error intercept and then curve downwards, eventually 
plateauing near an error rate of zero (as students achieve mastery 
of all the individual KCs). As is shown in Figure 1, our KC 
models clearly do not match our expectations. The two All-
Attempts curves actually increase over time, showing the opposite 
effect of what we expect based on theory. The two First-Attempt 



curves show more promise; they start with a declining curve over 
the first five states, then plateau at about 30% error rate 
afterwards. The data itself is jagged, but that does not necessarily 
invalidate our model as the curves for individual KCs can still 
have the expected downwards curve. 
Comparing these results makes it clear that the First-Attempt 
model is a better fit than the All-Attempts model (which supports 
the traditional method of counting student attempts in tutoring 
systems). The Modified-Step and All-Step models, on the other 
hand, turned out to be almost identical in structure (due to the  

 high overlap in their data), to the point that they could be used 
interchangeably. The Modified-Step model is closer to the 
traditional ITS model, so we will use it for the following analysis. 

 Next, we can examine the learning curves for each individual KC 
to determine where learning is happening. In DataShop, individual 
learning curves can be sorted into five categories: curves where 
there is not enough data for solid analysis (little-data), curves that 
start and end with low error rates (already-learned), curves that 
start and end with high error rates and show no downward trend 
(no-learning), curves that start and end with high error rates but do 
show a downwards trend (still-learning), and curves that start high 
but end low, demonstrating student mastery (good-learning). 
Optimally we’d like to see lots of good-learning curves, as they 
indicate that students are learning the concepts as expected, but 
the other curves are informative as well; already-learned concepts 
do not need to be covered as much, no-learning curves indicate 
problematic KCs, and still-learning curves demonstrate where 
extra practice is needed. 

We examined the individual KC learning curves within the First-
Attempt Modified-Step model, and found the following 
categorizations for our set of all AST node KCs: 

• Little-data: !=, <=, >=, Alias, Dictionary, Divide, Expression, 
Import, In, List, Not, Not In, Or, Slice, Subtract, Tuple, 
Unary Operation, Unsigned Subtract, While 

• Already-learned: If, Module 

• No-learning: <, >, Add, And, Assign, Attribute, Binary 
Operation, Boolean Operation, For, Index, Integer Divide, 
Load, Modulo, Multiply, Name, Number, Parameter, Power, 
Return, Store, String, Subscript 

• Still-learning: ==, Call 

• Good-learning: Arguments, Compare, Function Definition 
 At first glance, this categorization only suggests that there are 
many KCs which are not being practiced enough (in the Little-
data category) and many KCs which are not being learned (in the 
No-learning category). However, it’s possible to glean much more 
information by investigating the individual learning curves and 
seeing what they show about the data. To demonstrate this, we 
share examples of the different kinds of learning curves 
(excepting little-data, which is usually non-informative), and we 
discuss what they might mean. 

5.1 Good Learning Curves 
First, we’ll look at a successful learning curve for the Function 
Definition KC (as shown in Figure 2). This is an unusual KC as it 
only applied to the first six problems of the dataset that students 
had access to; these problems were presented with no starter code, 
while all future problems were given with a function header (to 
help standardize student responses). 

 First Attempt All Attempts 

Mod 
Steps 

 
 

 
 

All 
Steps 

 
 

 
 

Figure 1: Full-model learning curves for all four types of models. 
 



 
Figure 2: The good learning curve generated for the Function 

Definition KC. Starts at 23% error and approaches 0%. 
In this learning curve, the error rate starts at an average of 23.4%; 
not as high as many other KCs, but high enough to indicate that a 
around one out of five of students are struggling with the KC at 
their first attempt. In this model each new attempt is (usually) 
associated with a new problem; therefore, this graph shows that 
students struggled with the function definition in the first problem 
(helloWorld), but quickly mastered it in the following problems. 
We investigated the uptick at opportunity 5 and found that it was 
due to three of the twenty-five students asking for a hint before 
submitting anything to the associated problem (isPunctuation); as 
hints are counted as incorrect states by AFM, this resulted in an 
increase in the error rate.  

The Arguments learning curve is very similar to Function 
Definition, which is sensible as the two occur together. However, 
the Compare learning curve (shown in Figure 3) demonstrates a 
different learning effect. The data in this model mostly progresses 
slowly downwards, but it has a blip at opportunity 5, where it hits 
0 only to jump back up again. This seems to be due to a problem 
which used comparison very simply (to check if a value was less 
than 0, an edge case) that is surrounded by problems which use 
multiple comparisons that must be combined. This might be a sign 
that the skill required to use a single comparison operation is 
different from the skill of combining multiple comparisons, and 
that the two should be separated into different KCs (and taught as 
separate concepts as well). 

 
Figure 3: The learning curve generated for the Compare KC. 
The model trends downwards, from 30% to below 20%, and 

the data shows a similar trend. 

5.2 Still-Learning Curves 
Next we’ll look at a learning curve which seems to be trending 
downwards (as we’d expect), but does not reach a low enough 
error rate to say that the student has truly learned the concept. The 

Call KC occurs every time the student uses any function call in 
their code; therefore, it is surprising to see that this data is mostly 
consistent (albeit with a jagged appearance) and steadily heading 
downwards. This suggests that students are not learning new 
concepts for every new function they have to call; instead, they 
are learning a single concept, how to use any function call 
successfully. With more opportunities, we would expect this 
model to reach mastery. Therefore, we may wish to include more 
problems that let students practice using function calls. 

 
Figure 4: A learning curve that has not yet demonstrated 

mastery, showing student progress in the Call KC. The model 
starts at around 50% error rate and reaches 30% error rate 

before running out of opportunities. 

5.3 Already-Learned KCs 
One of the learning curves generated by our method was quite 
surprising to us; we did not expect to find that If statements would 
be classified as already-learned (as is shown in Figure 5)! This 
classification could be due to several reasons; perhaps the students 
are using if statements correctly but making errors in the tests and 
bodies of the statements, or perhaps the concept of a conditional is 
intuitive enough that students truly do solve the problems with no 
trouble. To investigate this, we looked more closely at the data 
associated with this learning curve, and we quickly determined 
that the real cause might be the method used to generate KC 
models at the beginning. 

 
Figure 5: The learning curve for the If Statement KC, which 
seemingly demonstrates that students have mastered using if 

statements from the very beginning. The curve remains below 
20% error for all opportunities. 

For each problem, we had generated a set of KCs to be measured 
based on the teacher solution to the problem. In the teacher view 
of the problems, many of the early problems could be solved by 
returning simple boolean expressions. However, students who 
solved these problems often opted to use conditionals instead, 



often writing code of the form if (boolean expr): return True else: 
return False. This means that students often got a great deal of 
practice at writing conditionals that was not actually measured. If 
these problems included If statements in their KC models, we 
would expect a more accurate learning curve for those students; 
however, this would also unfairly penalize the students who did 
not use If statements but succeeded in solving the problem. This 
could possibly be remedied by basing the KC model for each 
problem and each student off of the student’s eventual correct 
state, instead of the teacher’s goal state; however, this would 
provide less overlap between student models, and would provide 
less connection to the teacher’s intended problem design. 

5.4 No-Learning Curves 
Now that we have covered what the successful KC’s learning 
curves look like, we can start examining what might be happening 
with the curves that show no learning at all. Upon examination, 
these fall into two categories: data which has a flat error rate, and 
data with more jagged error rates. 

The first category (flat error rate) is demonstrated by Boolean 
Operation, For, Index, and Subscript. We’ll use the For KC as an 
example here (shown in Figure 6). This curve is exactly what 
we’d expect: it demonstrates a consistent error rate, which, though 
low, is not good enough to reach mastery. Investigation into the 
individual opportunities did not show a consistent reason for this; 
some error states were due to missing for loops, while others were 
caused by for loops being used in the wrong place. 

 
Figure 6: The learning curve for the For Loop KC, which 
shows a flat error rate. The error rate stays consistently 

between 20 and 30%. 
The data with jagged error rates is more interesting to examine. 
Attribute, Binary Operation, and Return give us this effect; we’ll 
examine the Binary Operation KC (which encompasses all non-
comparison or boolean operations with two operands), shown in 
Figure 7. By investigating the incorrect states that are represented 
by each of the opportunities, we can determine why students do so 
well at some states and so poorly at others. 

First, we looked into the low error rate opportunities (1, 2, 3, 5, 9, 
and 12). The first four were all problems where the only goal was 
to perform mathematical operations which were provided by the 
prompts, and it seems that most students had already mastered 
these mathematical skills (which is not surprising, as these are 
similar to basic calculator operations). The other opportunities, 
with higher error rates, have a range of causes: some used non-
mathematical operations (like concatenating strings), and some 
combined multiple operations in non-intuitive ways. Furthermore, 
binary operations such as x+1 were often treated as basic values in 
the more complex programs, and thus could often be marked 
incorrect when the real blame fell on higher-order constructs. This 

also occurred with the Name, Number, and String KCs; all had 
wildly inconsistent learning curves due to their prolific use 
throughout programs. 

 
Figure 7: A learning curve generated for the Binary 

Operation KC. The jagged pattern indicates potential 
problems with the KC. 

It may be possible to improve the fit of binary operations by 
splitting them up based on the operator type; however, the 
learning curves generated for the operators themselves either have 
too little data to identify learning or exhibit no learning at all. We 
might meet more success if we group up the operators into sub-
categories and separate out the different purposes that some of the 
overloaded operators (like addition) have. 

6. Discussion 
In this paper, we’ve attempted to automatically generate KC 
models for programming out of the AST components used in 
program solutions. We’ve investigated whether these models 
should be generated using all attempts vs the first attempt only, 
and whether only modified nodes should be included in each 
opportunity vs all KC nodes. Our results show that the first 
attempt model tends to produce cleaner learning curves, and the 
two step models perform equally well. However, the general 
learning curves produced do not show the expected reduction in 
error rate. To determine why, we looked into the individual KC 
learning curves. 

In investigating these individual learning curves, we found wide-
ranging results. First, we found that several KCs did not contain 
enough data to demonstrate learning; in other words, the students 
weren’t getting enough practice to master those concepts. This can 
be remedied by producing more problems that cover the neglected 
KCs. Many KCs did not exhibit any learning (possibly due to bad 
KC modeling), but some did show learning, either complete or 
partial. Investigating the erroneous states that led to these learning 
curves helped us identify several unexpected occurrences, such as 
the fact that students had already mastered If statements by the 
time they reached the problems where they were first supposed to 
use them, and the fact that function calls seem to be learned 
independently of different function types. Findings such as these, 
if they are validated in future work, could be used to inform the 
teaching of programming (for example, by including the 
instruction of conditionals much earlier in the curriculum, as 
students will apparently use them regardless of instructor intent). 

In future work, we plan to modify the KCs used in the models 
we’ve generated to see if we can improve the modeling of the 
student data. Several possible modifications were mentioned in 
the Results section; for example, we might group similar AST 
nodes (such as the comparison operators <, >, <=, and >=) 
together into joint KCs, as they can all be used for semantically 



equivalent purposes. We might also try to identify when a single 
KC is actually representing several different concepts; for 
example, we can split the Add operator into its different types 
(string concatenation and numeric addition), and we can try to 
identify simple edge-case comparisons and separate them from 
more complex comparisons. Modifying these KC models may 
lead to better-fitting learning curves that better model how 
students are learning. 

We’ve also considered additional approaches that could be used in 
defining programming step opportunities and correctness in the 
processing stages of model construction. First, we could generate 
KC models for each problem based on the student’s individual 
goal state, instead of the teacher goal state; this would allow us to 
capture learning on all the AST nodes that a student used, instead 
of just measuring learning on the originally intended concepts. 
This approach might remedy the problem shown in the If 
statement KC. Alternatively, instead of using path construction to 
identify the correctness of KCs, we could use the test cases 
assigned to the program, where each test case could be mapped to 
the set of nodes which that test case is supposed to cover. This 
would require more advanced program analysis, but could yield 
more accurate results without relying on the creation of goal states 
for correctness measurement. We also considered using the 
provided teacher solution for comparing student solutions to a 
goal state instead of computing goal states via algorithm; 
however, attempting this quickly revealed that it was a useless 
approach, as the multitude of possible solutions led to an 
artificially high error rate in all KCs.  

In this paper we demonstrated how DataShop could be used to 
examine learning curves and investigate erroneous states; 
however, there are other DataShop features which we did not 
utilize. For example, the Performance Profiler feature can be used 
to identify the error rates for different KCs across different 
problems/steps/etc. Using this system, we could look more deeply 
into the data to determine whether some KCs are being used in 
different contexts at different times (for example, if the Add node 
has different error rates when adding numbers when compared to 
adding strings or lists). This could help us start building up more 
semantic KC models which may have a greater chance at 
successful modeling. 

There are several limitations to our work. First, we are using 
learning curve analysis and AFM in ways that they were not 
originally designed for; it is possible that the results we have 
gotten from them may not be indicative of actual student learning. 
Additionally, our decision to define KC correctness based on the 
edits between the state and a chosen goal state is a very rough 
approximation of true KC correctness. It’s possible that the 
optimal goal for the student’s current state will not have been 
chosen, resulting in more edits than are necessary; it’s also 
possible that a node could be correctly used, but would still need 
to be changed in order to get to a correct code state. Future work 
in hand-coding the states might be used to see how accurate this 
automated approach is at estimating KC correctness. 

Furthermore, our method of representing steps as simultaneously-
executed actions is very different from the traditional 
implementation of steps in intelligent tutoring systems and other 
educational technology. Compounding this is the fact that there 
may be many other invisible steps that we are not measuring at 
all, such as students’ design decisions, which occur before they 
even start to write code. We welcome suggestions on how this 
step model could be modified to better represent the reality of 
student work. 

In traditional intelligent tutoring systems, it is assumed that 
problem sequencing is handled with a mastery paradigm [6]; once 
a student has mastered a concept the system can move on to a new 
topic. However, in a conventional programming task, this is 
impossible, since old KCs must be used to build up new ones as 
more advanced concepts are learned. Therefore, it’s possible that 
the behavior of learning curves will be different in this context 
than in other, less construction-based contexts. 

Finally, we were unable to construct a validation strategy for the 
models at the time of writing, as we did not yet have student 
performance data outside of the system to compare the models to. 
Therefore, we must rely on the success of AFM in other domains 
as evidence that the models can truly emulate student learning. If 
student data was available, we could check for similarity between 
the produced model’s student intercepts (which are supposed to 
simulate the incoming ability of individual students) and the 
pretest scores of students in the class; this at least could be used to 
determine whether the model as a whole mirrors reality 
accurately. Additionally, we could design test items to target 
specific KCs, then have the students complete these items after 
practicing, in order to see whether students perform better on 
items that are shown as mastered in the model. We hope to use 
these approaches and others in future work. 

7. Conclusion 
We hope that, overall, this work can serve as evidence of the fact 
that programming data can be evaluated using approaches that 
more closely examine the code that students produce and the 
learning that students do over time. Approaches such as KC 
modeling and learning curve analysis can help us understand the 
precise concepts that students are struggling with, which may 
inform the future design of programming curricula in order to 
better enable learning. There are many modifications that could be 
made to the models presented here in order to more accurately 
represent programming knowledge, and we hope that others will 
use and adjust some of the method presented in this paper to test 
these modifications in future work. 
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