
Learning Curve Analysis for Programming: Which
Concepts do Students Struggle With?

Kelly Rivers, Erik Harpstead, Ken Koedinger
Human-Computer Interaction Institute, Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15232

{krivers, eharpste, koedinger}@cs.cmu.edu

Abstract
The recent surge in interest in using educational data mining on
student written programs has led to discoveries about which
compiler errors students encounter while they are learning how to
program. However, less attention has been paid to the actual code
that students produce. In this paper, we investigate programming
data by using learning curve analysis to determine which
programming elements students struggle with the most when
learning in Python. Our analysis extends the traditional use of
learning curve analysis to include less structured data, and also
reveals new possibilities for when to teach students new
programming concepts. One particular discovery is that while we
find evidence of student learning in some cases (for example, in
function definitions and comparisons), there are other
programming elements which do not demonstrate typical learning.
 In those cases, we discuss how further changes to the model
could affect both demonstrated learning and our understanding of
the different concepts that students learn.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer Science Education

Keywords
learning curve analysis; educational data mining; programming
syntax; knowledge components

1. Introduction
In recent years there has been growing interest in using large
collections of logged programming data to understand how
students learn, what they struggle with, and what we can do to
improve computer science education. This trend is occurring at
the same time as a rise in the use of Educational Data Mining
(EDM) [2], a field of study which has developed many useful new
approaches for analyzing and interpreting collected student data.
However, the majority of research done on programming data has
only used metric approaches that cover easily measurable content,
such as the compiler errors students encounter and their typical
working behaviors [10]. These studies have taught us a great deal
about how students write code, but they have mostly examined the
output of code, instead of investigating how the code that students

write changes over time. It is possible that, by ignoring the written
code that students produce, we are missing out on a great deal of
useful information.
The broader field of EDM investigates how details of student
work can be used to determine what and how students are
learning. Leveraging theories about the ideal shape of learning
[14] and the structure of student knowledge [13], researchers in
this space have developed methods for tracking student learning
of knowledge components across multiple problems [4, 6], to see
if students’ ability to solve problem steps associated with
particular concepts matches what theory would predict.
Discrepancies between theory’s predictions and students’
behaviors can be used to suggest improvements to instruction that
result in demonstrably better student learning [20]. These
techniques have been successful in structured environments such
as intelligent tutoring systems and have demonstrated
applicability to many fields such as mathematics, vocabulary, and
chemistry; however, with a few notable exceptions [1], they have
seen less application in domains like programming.

In this work, we present a preliminary exploration of the
application of knowledge-based learning curve analysis on
programming data with the goal of extending the promise of
educational data mining to programming. As this is, to our
knowledge, the first attempt to apply learning curve analysis to
programming data, our research questions are the following: can
we successfully apply the methods of knowledge component
modeling and learning curve analysis to code-writing
programming data, and can we use the resulting models to
evaluate student learning? In order to address these goals, we
must first determine which individual concepts students might be
struggling with. In this paper, we discuss multiple possible models
of programming knowledge components, describe how we
modified the traditional modeling process to be compatible with
programming data, and analyze the resulting models, sharing our
thoughts on the process along the way.
The contributions of this paper are:

• A modification to the traditional method of knowledge
component modeling, to be used with code-writing data.

• Learning curves computed using real student data and
categorizations of different syntax-based programming
concepts based on these curves.

• Recommendations on future directions for knowledge modeling
and learning curve analysis in the domain of programming.

2. Background
The work we present in this paper is rooted in the context of the
Knowledge-Learning-Instruction (KLI) framework [13]. The KLI
framework is concerned with providing a vocabulary for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
ICER '16, September 08 - 12, 2016, Melbourne, VIC, Australia
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4449-4/16/09…$15.00
DOI: http://dx.doi.org/10.1145/2960310.2960333

exploring how different types of knowledge constrain learning
processes and in turn how different learning processes constrain
which instructional choices will be optimal for robust student
learning. Central to the broader theory of KLI is the concept of a
Knowledge Component (KC) which is defined as “an acquired
unit of cognitive function or structure that can be inferred from
performance on a set of related tasks.” As learners are provided
with instructional events for a particular KC it becomes more
likely that they will demonstrate mastery of that KC when later
assessed. This might seem straightforward, but it can be
challenging to rigorously define what the KCs in a given domain
are, and from there decide how best to structure the instructional
environment to support those particular KCs.

On the other hand, most EDM research into programming data so
far has focused on high level performance metrics and errors,
instead of looking at how student code changes over time.
However, there have been some exceptions. Several researchers
have investigated the use of interaction networks as a way to
interpret student work on a programming problem over time. This
includes work on Parsons problems [7], Karel programs [16], and
Java assignments [8]. These approaches tell us a great deal about
how students develop their programs over time, but they do not
separate out different knowledge concepts that can be investigated
individually.

Some researchers have applied other EDM methods to
programming data. Berges and Hubweiser used Item Response
Theory (IRT) to compare the difficulty of different programming
concepts, using concepts tagged on source code written by the
students [3]. Kasurinen and Nikula applied Bayesian Knowledge
Tracing (BKT) to programming data by predicting whether
students would apply the correct structure to their code answers
across sets of questions and found that about half of their students
were predicted to have reached mastery on five central concepts
by the end of their course [11].

In work closer to our own, Cherenkova et al. mapped problems to
the concepts they were designed to test and used student success
(on first attempt) to determine which concepts students were most
challenged by [5]. They identified conditionals and loops as being
particularly challenging for students. Yudelson et al. built student
models based on code submissions over time, using the Rasch
model and variations on the Additive Factors Model (AFM) [22].
Their process has many similarities to ours, but focuses on the
question of how best to model students instead of investigating
which specific concepts students are struggling with.

2.1 Learning Curve Analysis
Inspired by the power law of practice [14], learning curve analysis
is an approach from broader EDM research that focuses on
estimating learners’ performance over time [4]. The learning
theory behind the approach is that the probability that a learner
would make an error in exercising a given skill should decrease
over time as they get more opportunities to practice the skill.
Traditionally, skills in this context are formalized as KCs, with a
given task exercising one or more KCs. Students who possess a
mastery of those KCs are more likely to perform the task
correctly.

From a statistical perspective, learning curves are fit to student
performance data using the Additive Factors Model (AFM) [4].
AFM is a specialized form of logistic regression that uses
information about a student’s prior practice opportunities with a
set of KCs to predict the probability that they will perform

correctly on a given opportunity. The mathematical formulation of
AFM’s regression equation takes the following form:

This equation says that the log odds of a given student i
performing step j, which exercises KC k, correctly can be
predicted by a combination of an intercept for the student θi, an
intercept for the KC βk, and a KC slope γk., where Nik represents a
count of how many prior opportunities student i has had to
practice KC k and Qkj is a binary Q-matrix defining the mapping
between KCs and steps.

The general assumptions of the AFM model are that every student
possesses individual differences in initial ability, represented by
the student intercept; every KC has a different initial difficulty,
represented by the KC intercept; and that everyone tends to master
a given KC at the same rate, represented by a single KC slope for
all learners. In the most commonly used implementation of AFM
[12] there is a fourth constraint imposed, not noted in the
regression equation, where KC slopes cannot be negative
(meaning that people do not unlearn or forget KCs).

3. Methodology
Before applying learning curve analysis to programming data we
must first answer a few questions about how to adapt the usual
methods to the unique properties of the programming domain.
This is more difficult than it may at first sound, due to differences
in the format of data traditionally used in learning curve analysis
and the kind of data generated by programming tasks.

In the tutoring systems traditionally evaluated with learning
curves, problems are broken down into individual steps, where a
step is conventionally defined as the smallest unit of action that a
student can perform correctly [21]. In programming data, there is
no such definition of what a step should be. Programming data
can be collected at as low a level as every keystroke made by
students, but it is unclear how correctness could be measured for
these low-level edits. Alternatively, data can be collected on
student submissions and help requests; these submissions can be
measured for correctness (using suites of test cases), but they also
encompass many individual edits that have been made to the code.

In intelligent tutors, each problem’s steps are tagged with one or
more KCs at time of analysis. Since each step can be individually
measured for correctness, each of the KCs can be analyzed for
changes in correctness over time, to see whether students are
learning. The analogy between tutor steps and submissions breaks
down here, as failing test cases in a programming submission does
not mean that every component of the code is wrong; it only
means that a subset of the components are wrong. Therefore, we
need to define a way to represent steps in programming problems
that allows us to do useful data analysis.

To accomplish this, we address the following questions in the next
sections:

• What are the KCs of programming?

• What are the steps and opportunities in a programming
problem?

• How should correctness be measured for each of these steps?

3.1 Programming KCs
In order to model learners’ acquisition of programming KCs, we
first need to determine what the KCs of programming are, so that

we can construct a KC model that will accurately reflect student
performance on programming tasks. In a broader sense this
question has been a point of interest in the Computer Science
Education Research community for many years, as many
researchers have attempted to discover what the low-level
concepts students are learning actually are.
First, one could view a programming problem as a set of
constraints that the program needs to fulfill. These constraints can
take the form of subproblems and/or test cases, which can all be
individually assessed to see whether their requirements have been
met. This model is a direct analogy to the step model typically
used in tutoring systems. However, the subproblems and test cases
are not themselves KCs, as we do not want students to learn how
to solve specific test cases; we want them to learn how to write
code that can be used to solve test cases like the ones assigned.
Therefore, we still need to map these subproblems to sets of KCs.

Instead of using constraints, one could view programs through a
broader algorithmic lens. From this perspective, students combine
programming plans (common code substructures) in order to solve
problems [19]. This approach has great potential as an accurate
measure of student knowledge, but it assumes that students
already understand the syntax of the programs they are writing,
which is not always the case with novices. As we are investigating
the work of new programmers in this paper, we leave algorithmic
KC models for future work.

When considering the structure of knowledge in the programming
domain, programming skill could be characterized as learning to
choose the right program constructs (or combinations of
constructs) in the appropriate circumstances for a specific goal.
These can be represented as condition-and-response pairs, where a
condition is the action that needs to be done and the response is
the program token (or tokens) that can be used to execute that
action. For example, if a student needs to store a value, they have
to use the variable assignment operation. As a simplifying
assumption, we could use the different textual tokens that appear
in programs as indicators of construct use; additionally, if we can
parse student code into Abstract Syntax Trees (ASTs), we can
identify exactly when and where specific constructs are being
used by walking the tree to find different node types. In this paper
we utilize these AST node types to test whether this theory of
programming knowledge as the ability to identify the correct
conditions and provide the correct responses is an accurate model
of programming KCs.

This approach still leaves some questions about implementation;
for example, should each AST node type be treated as an
individual KC, or should some tokens be collapsed together into
broader categories? As a first step towards exploring this
approach we decided to use a strategy that would include every
token type in the built-in Python AST library. Once an initial
candidate KC model has been created, it is common practice in
learning curve analysis to explore various model refinements of
merging more fine grained models, using both automated [4] and
manual [20] methods; we plan to undertake this refinement in
future work. These methods may help us determine how to change
the original AST node types into KCs that are closer to the true
knowledge that students are learning.

3.2 Programming Steps and Opportunities
A ‘step’ is hard to define in a generative context where students
can do a lot of typing at once. For now, we choose to define a step
at the level of a student’s deliberate action, whenever they submit
a program or ask for a hint. However, we cannot use the

submission process as a single opportunity for all of the problem’s
KCs, since it implies that all KCs are required to be concurrently
present in order for a student to solve a given submission
correctly. While this is an accurate description of how the
programming tutor provides feedback to students, it makes it
difficult to tease apart which KCs students are struggling with
most when they get a submission incorrect. Therefore, we say
instead that each submission/hint request can be viewed as a
single step that encompasses a sequence of opportunities in
parallel, where each opportunity corresponds to an individual KC.

In traditional learning curve analysis, only the first attempt at each
KC opportunity is used to measure student learning. This is done
because traditional systems give students immediate feedback on
each individual step. This means that after the first attempt,
correctly solving a step does not necessarily mean that a student
understands how to perform the step correctly; it could be that
they are only doing what the feedback told them to, with no
further comprehension. Programming problems seem different, as
students are given feedback on the whole problem, not the
individual tokens they’re writing. Still, it is possible that student
might be applying the feedback to individual tokens. Therefore,
we test two different kinds of KC step models: one which includes
only data from the first attempt to each problem (where only the
first submission of each session with a problem is counted in
fitting learning curves), and one which includes all student
submissions to the same problem. We call these two step-models
First-Attempt and All-Attempts.

3.3 Step Correctness
The final question we must answer is how to determine if a
particular application of a programming KC was done correctly.
Since we are using AST node types as KCs, we can evaluate the
correctness of each KC opportunity by determining whether that
node has been used correctly in the student’s code. We define
‘correct use’ as follows: a) that the node occurs in the program,
and b) that the node does not occur in the computed difference
between the program and a correct version of the program, as
generated by the ITAP algorithm [17]. In other words, an AST
node type must be included in the correct portion of a student’s
code to be measured as correct. For a given opportunity, we
explore two alternative approaches to measuring correctness.
First, we could say that every KC opportunity must be evaluated
in every attempt. In that case:
• If the KC occurs in the edit between the student’s solution and

the goal solution, it is INCORRECT

• If the KC is missing from the student’s solution and this is the
student’s last (measured) attempt at that problem, it is
INCORRECT

• Otherwise, it is CORRECT
Alternatively, we can say that all KC opportunities are evaluated
in the first attempt, but in following submissions we only look at
opportunities which changed after the previous attempt. Then:

• If the KC occurs in the edit between the student’s solution and
the goal solution, it is INCORRECT

• If the KC occurs in the edit between previous and current state
(or if this is the first attempt), it is CORRECT

• If the KC is missing from the student’s solution and this is the
student’s last attempt at the problem, it is INCORRECT

• Otherwise, it is skipped for this step

Overall, we have a 2x2 variation structure with four KC models
which we propose to build, as is shown in Table 1. We can think
of the First-Attempts/Modified-Steps model as being closest to
traditional KC models, and the All-Attempts/All-Steps model as
providing the most data possible. We can compare these KC
models to determine which provides the best learning curves,
which we can then use to analyze student work and see what they
understand and what they struggle with.

Table 1: The four KC models proposed in method
modification.

First-Attempt/Modified-Steps All-Attempts/Modified-Steps

First-Attempt/All-Steps All-Attempts/All-Steps

4. Analysis
Now that we’ve hypothesized possible KC models, we need to
test them with real student data to see whether they can produce
viable learning curves. In the following sections, we describe how
we generated the four models and prepared them for statistical
analysis.

4.1 Dataset
The data we use comes from a study run in Spring 2016 on two
introductory programming courses at Carnegie Mellon University.
In this study, students were given access to an instance of
Cloudcoder [15], an online IDE, which contained 40 Python
programming practice problems covering a range of topics,
including basic function structure, expression operations,
conditionals, loops, lists, dictionaries, and recursion. Each practice
problem had a Submit button which could be used to test the
student’s work against a collection of test cases, which would
immediately showing the student the results. Students also
sometimes had access to a Hint button which, when pressed,
would generate a next-step hint for them based on the ITAP
algorithm [18]. The study design randomized when students had
access to the hint button, so that half of the students had access
from weeks 1-3 of the study and the other half had access from
weeks 4-6. All students could access the Hint button from weeks
7+.

We have not yet described how hint attempts would be included
in the model, as they are not a typical component of programming
log data. In traditional intelligent tutoring systems, hints are
conventionally counted as an incorrect attempt at whatever KC
the hint would have pointed the student toward. Therefore, we
find the edit that was used to construct the hint (where the edit is
composed of an old code snippet and a new code snippet), and for
each KC opportunity determine whether the given node type
occurred in the edit. Nodes which did occur are included as a
HINT opportunity, while the other nodes are ignored. This
process can be used across all four KC Model types, as it is a
direct analogy from traditional ITS models.

All student use of the practice problems was optional, though
students were told in class that completing practice problems
could help them learn more. Out of 692 students in both classes,
89 agreed to having their data collected and chose to submit an
answer for at least one programming problem. These 89 students
made 2907 submissions and 380 hint requests over the course of
the semester, resulting in a total of 3287 states over all 40
problems.

4.2 Model Generation Process
For each problem, we used Python’s AST library to automatically
identify all node types that occurred in the exemplar solution of
the problem. For example, the problem helloWorld (which asked
students to return the string ‘Hello World!’) contained five main
AST node types: Module, Function Definition, Arguments,
Return, and String. This is similar to the approach used in
JavaParser to identify concepts occurring in Java programs [9]. 48
unique tokens were identified across all problems, with an average
of about 11 tokens per problem.

We sorted the states by timestamp, then generated a solution
space from all of the states using ITAP’s path construction
methodology [17]. For each state, we then used the solution space
to identify the set of edits between the state and the closest goal
state (for attempt states), or the specific edit that would be
provided in a hint (for the hint request states). We identified the
nodes that occurred in these edits and the original states, and the
edits between original states and previous states by traversing the
given ASTs.

For the Modified-Steps method, we generated a set of
opportunities where opportunity names corresponded to node
types and correctness depended on the method mentioned above
(incorrect if node was not in the state or the goal-edit, correct if
the node was in the state-edit, not included otherwise). For the
All-Steps model, we used the same process, except that all KCs
not marked as incorrect were marked as correct. The two models
generated this way were both First-Attempt models; to generate
the corresponding All-Attempts models, we went back through
the steps and re-named them to include the step’s iteration, as was
described above. This resulted in all four models that we wished
to test.

4.3 DataShop
At this point, we were ready to perform learning curve analysis on
the KC models. To accomplish this we used DataShop, an online
data analysis service [12]. In order to upload the models to
DataShop, we generated files which included the following
properties: Student ID, Timestamp, Student Response Type,
Problem Name, Step Name, Outcome, and KC. (KC corresponded
to the node type for each step, regardless of the used step name;
the rest of the data was already available). DataShop
automatically performed AFM on the datasets and generated
learning curves for the KCs, making it possible for us to move
directly to analysis of the results.

5. Results
Now we can examine the learning curves that resulted from this
data in order to determine how well our models fit the traditional
idea of a learning curve, and which KCs students struggle with the
most. In all of the learning curves that follow, we cut off the
graphs once the number of students included in each data point
drops below 9, in order to make sure that at least 10% of our
population is always represented (and to avoid strange outlier
behavior).
First, we want to see what the whole-data-set learning curve
(which averages the learning curves of all the KCs) looks like for
each model. If the KC model is accurate, these curves should start
with a high error intercept and then curve downwards, eventually
plateauing near an error rate of zero (as students achieve mastery
of all the individual KCs). As is shown in Figure 1, our KC
models clearly do not match our expectations. The two All-
Attempts curves actually increase over time, showing the opposite
effect of what we expect based on theory. The two First-Attempt

curves show more promise; they start with a declining curve over
the first five states, then plateau at about 30% error rate
afterwards. The data itself is jagged, but that does not necessarily
invalidate our model as the curves for individual KCs can still
have the expected downwards curve.
Comparing these results makes it clear that the First-Attempt
model is a better fit than the All-Attempts model (which supports
the traditional method of counting student attempts in tutoring
systems). The Modified-Step and All-Step models, on the other
hand, turned out to be almost identical in structure (due to the

 high overlap in their data), to the point that they could be used
interchangeably. The Modified-Step model is closer to the
traditional ITS model, so we will use it for the following analysis.

 Next, we can examine the learning curves for each individual KC
to determine where learning is happening. In DataShop, individual
learning curves can be sorted into five categories: curves where
there is not enough data for solid analysis (little-data), curves that
start and end with low error rates (already-learned), curves that
start and end with high error rates and show no downward trend
(no-learning), curves that start and end with high error rates but do
show a downwards trend (still-learning), and curves that start high
but end low, demonstrating student mastery (good-learning).
Optimally we’d like to see lots of good-learning curves, as they
indicate that students are learning the concepts as expected, but
the other curves are informative as well; already-learned concepts
do not need to be covered as much, no-learning curves indicate
problematic KCs, and still-learning curves demonstrate where
extra practice is needed.

We examined the individual KC learning curves within the First-
Attempt Modified-Step model, and found the following
categorizations for our set of all AST node KCs:

• Little-data: !=, <=, >=, Alias, Dictionary, Divide, Expression,
Import, In, List, Not, Not In, Or, Slice, Subtract, Tuple,
Unary Operation, Unsigned Subtract, While

• Already-learned: If, Module

• No-learning: <, >, Add, And, Assign, Attribute, Binary
Operation, Boolean Operation, For, Index, Integer Divide,
Load, Modulo, Multiply, Name, Number, Parameter, Power,
Return, Store, String, Subscript

• Still-learning: ==, Call

• Good-learning: Arguments, Compare, Function Definition
 At first glance, this categorization only suggests that there are
many KCs which are not being practiced enough (in the Little-
data category) and many KCs which are not being learned (in the
No-learning category). However, it’s possible to glean much more
information by investigating the individual learning curves and
seeing what they show about the data. To demonstrate this, we
share examples of the different kinds of learning curves
(excepting little-data, which is usually non-informative), and we
discuss what they might mean.

5.1 Good Learning Curves
First, we’ll look at a successful learning curve for the Function
Definition KC (as shown in Figure 2). This is an unusual KC as it
only applied to the first six problems of the dataset that students
had access to; these problems were presented with no starter code,
while all future problems were given with a function header (to
help standardize student responses).

 First Attempt All Attempts

Mod
Steps

All
Steps

Figure 1: Full-model learning curves for all four types of models.

Figure 2: The good learning curve generated for the Function

Definition KC. Starts at 23% error and approaches 0%.
In this learning curve, the error rate starts at an average of 23.4%;
not as high as many other KCs, but high enough to indicate that a
around one out of five of students are struggling with the KC at
their first attempt. In this model each new attempt is (usually)
associated with a new problem; therefore, this graph shows that
students struggled with the function definition in the first problem
(helloWorld), but quickly mastered it in the following problems.
We investigated the uptick at opportunity 5 and found that it was
due to three of the twenty-five students asking for a hint before
submitting anything to the associated problem (isPunctuation); as
hints are counted as incorrect states by AFM, this resulted in an
increase in the error rate.

The Arguments learning curve is very similar to Function
Definition, which is sensible as the two occur together. However,
the Compare learning curve (shown in Figure 3) demonstrates a
different learning effect. The data in this model mostly progresses
slowly downwards, but it has a blip at opportunity 5, where it hits
0 only to jump back up again. This seems to be due to a problem
which used comparison very simply (to check if a value was less
than 0, an edge case) that is surrounded by problems which use
multiple comparisons that must be combined. This might be a sign
that the skill required to use a single comparison operation is
different from the skill of combining multiple comparisons, and
that the two should be separated into different KCs (and taught as
separate concepts as well).

Figure 3: The learning curve generated for the Compare KC.
The model trends downwards, from 30% to below 20%, and

the data shows a similar trend.

5.2 Still-Learning Curves
Next we’ll look at a learning curve which seems to be trending
downwards (as we’d expect), but does not reach a low enough
error rate to say that the student has truly learned the concept. The

Call KC occurs every time the student uses any function call in
their code; therefore, it is surprising to see that this data is mostly
consistent (albeit with a jagged appearance) and steadily heading
downwards. This suggests that students are not learning new
concepts for every new function they have to call; instead, they
are learning a single concept, how to use any function call
successfully. With more opportunities, we would expect this
model to reach mastery. Therefore, we may wish to include more
problems that let students practice using function calls.

Figure 4: A learning curve that has not yet demonstrated

mastery, showing student progress in the Call KC. The model
starts at around 50% error rate and reaches 30% error rate

before running out of opportunities.

5.3 Already-Learned KCs
One of the learning curves generated by our method was quite
surprising to us; we did not expect to find that If statements would
be classified as already-learned (as is shown in Figure 5)! This
classification could be due to several reasons; perhaps the students
are using if statements correctly but making errors in the tests and
bodies of the statements, or perhaps the concept of a conditional is
intuitive enough that students truly do solve the problems with no
trouble. To investigate this, we looked more closely at the data
associated with this learning curve, and we quickly determined
that the real cause might be the method used to generate KC
models at the beginning.

Figure 5: The learning curve for the If Statement KC, which
seemingly demonstrates that students have mastered using if

statements from the very beginning. The curve remains below
20% error for all opportunities.

For each problem, we had generated a set of KCs to be measured
based on the teacher solution to the problem. In the teacher view
of the problems, many of the early problems could be solved by
returning simple boolean expressions. However, students who
solved these problems often opted to use conditionals instead,

often writing code of the form if (boolean expr): return True else:
return False. This means that students often got a great deal of
practice at writing conditionals that was not actually measured. If
these problems included If statements in their KC models, we
would expect a more accurate learning curve for those students;
however, this would also unfairly penalize the students who did
not use If statements but succeeded in solving the problem. This
could possibly be remedied by basing the KC model for each
problem and each student off of the student’s eventual correct
state, instead of the teacher’s goal state; however, this would
provide less overlap between student models, and would provide
less connection to the teacher’s intended problem design.

5.4 No-Learning Curves
Now that we have covered what the successful KC’s learning
curves look like, we can start examining what might be happening
with the curves that show no learning at all. Upon examination,
these fall into two categories: data which has a flat error rate, and
data with more jagged error rates.

The first category (flat error rate) is demonstrated by Boolean
Operation, For, Index, and Subscript. We’ll use the For KC as an
example here (shown in Figure 6). This curve is exactly what
we’d expect: it demonstrates a consistent error rate, which, though
low, is not good enough to reach mastery. Investigation into the
individual opportunities did not show a consistent reason for this;
some error states were due to missing for loops, while others were
caused by for loops being used in the wrong place.

Figure 6: The learning curve for the For Loop KC, which
shows a flat error rate. The error rate stays consistently

between 20 and 30%.
The data with jagged error rates is more interesting to examine.
Attribute, Binary Operation, and Return give us this effect; we’ll
examine the Binary Operation KC (which encompasses all non-
comparison or boolean operations with two operands), shown in
Figure 7. By investigating the incorrect states that are represented
by each of the opportunities, we can determine why students do so
well at some states and so poorly at others.

First, we looked into the low error rate opportunities (1, 2, 3, 5, 9,
and 12). The first four were all problems where the only goal was
to perform mathematical operations which were provided by the
prompts, and it seems that most students had already mastered
these mathematical skills (which is not surprising, as these are
similar to basic calculator operations). The other opportunities,
with higher error rates, have a range of causes: some used non-
mathematical operations (like concatenating strings), and some
combined multiple operations in non-intuitive ways. Furthermore,
binary operations such as x+1 were often treated as basic values in
the more complex programs, and thus could often be marked
incorrect when the real blame fell on higher-order constructs. This

also occurred with the Name, Number, and String KCs; all had
wildly inconsistent learning curves due to their prolific use
throughout programs.

Figure 7: A learning curve generated for the Binary

Operation KC. The jagged pattern indicates potential
problems with the KC.

It may be possible to improve the fit of binary operations by
splitting them up based on the operator type; however, the
learning curves generated for the operators themselves either have
too little data to identify learning or exhibit no learning at all. We
might meet more success if we group up the operators into sub-
categories and separate out the different purposes that some of the
overloaded operators (like addition) have.

6. Discussion
In this paper, we’ve attempted to automatically generate KC
models for programming out of the AST components used in
program solutions. We’ve investigated whether these models
should be generated using all attempts vs the first attempt only,
and whether only modified nodes should be included in each
opportunity vs all KC nodes. Our results show that the first
attempt model tends to produce cleaner learning curves, and the
two step models perform equally well. However, the general
learning curves produced do not show the expected reduction in
error rate. To determine why, we looked into the individual KC
learning curves.

In investigating these individual learning curves, we found wide-
ranging results. First, we found that several KCs did not contain
enough data to demonstrate learning; in other words, the students
weren’t getting enough practice to master those concepts. This can
be remedied by producing more problems that cover the neglected
KCs. Many KCs did not exhibit any learning (possibly due to bad
KC modeling), but some did show learning, either complete or
partial. Investigating the erroneous states that led to these learning
curves helped us identify several unexpected occurrences, such as
the fact that students had already mastered If statements by the
time they reached the problems where they were first supposed to
use them, and the fact that function calls seem to be learned
independently of different function types. Findings such as these,
if they are validated in future work, could be used to inform the
teaching of programming (for example, by including the
instruction of conditionals much earlier in the curriculum, as
students will apparently use them regardless of instructor intent).

In future work, we plan to modify the KCs used in the models
we’ve generated to see if we can improve the modeling of the
student data. Several possible modifications were mentioned in
the Results section; for example, we might group similar AST
nodes (such as the comparison operators <, >, <=, and >=)
together into joint KCs, as they can all be used for semantically

equivalent purposes. We might also try to identify when a single
KC is actually representing several different concepts; for
example, we can split the Add operator into its different types
(string concatenation and numeric addition), and we can try to
identify simple edge-case comparisons and separate them from
more complex comparisons. Modifying these KC models may
lead to better-fitting learning curves that better model how
students are learning.

We’ve also considered additional approaches that could be used in
defining programming step opportunities and correctness in the
processing stages of model construction. First, we could generate
KC models for each problem based on the student’s individual
goal state, instead of the teacher goal state; this would allow us to
capture learning on all the AST nodes that a student used, instead
of just measuring learning on the originally intended concepts.
This approach might remedy the problem shown in the If
statement KC. Alternatively, instead of using path construction to
identify the correctness of KCs, we could use the test cases
assigned to the program, where each test case could be mapped to
the set of nodes which that test case is supposed to cover. This
would require more advanced program analysis, but could yield
more accurate results without relying on the creation of goal states
for correctness measurement. We also considered using the
provided teacher solution for comparing student solutions to a
goal state instead of computing goal states via algorithm;
however, attempting this quickly revealed that it was a useless
approach, as the multitude of possible solutions led to an
artificially high error rate in all KCs.

In this paper we demonstrated how DataShop could be used to
examine learning curves and investigate erroneous states;
however, there are other DataShop features which we did not
utilize. For example, the Performance Profiler feature can be used
to identify the error rates for different KCs across different
problems/steps/etc. Using this system, we could look more deeply
into the data to determine whether some KCs are being used in
different contexts at different times (for example, if the Add node
has different error rates when adding numbers when compared to
adding strings or lists). This could help us start building up more
semantic KC models which may have a greater chance at
successful modeling.

There are several limitations to our work. First, we are using
learning curve analysis and AFM in ways that they were not
originally designed for; it is possible that the results we have
gotten from them may not be indicative of actual student learning.
Additionally, our decision to define KC correctness based on the
edits between the state and a chosen goal state is a very rough
approximation of true KC correctness. It’s possible that the
optimal goal for the student’s current state will not have been
chosen, resulting in more edits than are necessary; it’s also
possible that a node could be correctly used, but would still need
to be changed in order to get to a correct code state. Future work
in hand-coding the states might be used to see how accurate this
automated approach is at estimating KC correctness.

Furthermore, our method of representing steps as simultaneously-
executed actions is very different from the traditional
implementation of steps in intelligent tutoring systems and other
educational technology. Compounding this is the fact that there
may be many other invisible steps that we are not measuring at
all, such as students’ design decisions, which occur before they
even start to write code. We welcome suggestions on how this
step model could be modified to better represent the reality of
student work.

In traditional intelligent tutoring systems, it is assumed that
problem sequencing is handled with a mastery paradigm [6]; once
a student has mastered a concept the system can move on to a new
topic. However, in a conventional programming task, this is
impossible, since old KCs must be used to build up new ones as
more advanced concepts are learned. Therefore, it’s possible that
the behavior of learning curves will be different in this context
than in other, less construction-based contexts.

Finally, we were unable to construct a validation strategy for the
models at the time of writing, as we did not yet have student
performance data outside of the system to compare the models to.
Therefore, we must rely on the success of AFM in other domains
as evidence that the models can truly emulate student learning. If
student data was available, we could check for similarity between
the produced model’s student intercepts (which are supposed to
simulate the incoming ability of individual students) and the
pretest scores of students in the class; this at least could be used to
determine whether the model as a whole mirrors reality
accurately. Additionally, we could design test items to target
specific KCs, then have the students complete these items after
practicing, in order to see whether students perform better on
items that are shown as mastered in the model. We hope to use
these approaches and others in future work.

7. Conclusion
We hope that, overall, this work can serve as evidence of the fact
that programming data can be evaluated using approaches that
more closely examine the code that students produce and the
learning that students do over time. Approaches such as KC
modeling and learning curve analysis can help us understand the
precise concepts that students are struggling with, which may
inform the future design of programming curricula in order to
better enable learning. There are many modifications that could be
made to the models presented here in order to more accurately
represent programming knowledge, and we hope that others will
use and adjust some of the method presented in this paper to test
these modifications in future work.

8. Acknowledgements
Thanks to Jason Imbrogno for his help with an early version of
this project. This work was supported in part by Graduate
Training Grant awarded to Carnegie Mellon University by the
Department of Education (# R305B090023).

9. References
[1] Anderson, J.R. and Reiser, B.J. 1985. The LISP Tutor.

BYTE. 10, 4 (1985), 159–175.

[2] Baker, R.S.J.D. and Yacef, K. 2009. The State of
Educational Data Mining in 2009 : A Review and Future
Visions. Journal of Educational Data Mining. 1, 1
(2009), 3–16.

[3] Berges, M. and Hubwieser, P. 2015. Evaluation of
Source Code with Item Response Theory. ITiCSE ’15
(2015), 51–56.

[4] Cen, H. et al. 2006. Learning Factors Analysis – A
General Method for Cognitive Model Evaluation and
Improvement. ITS ’06 (2006), 164–175.

[5] Cherenkova, Y. et al. 2014. Identifying Challenging CS1
Concepts in a Large Problem Dataset. SIGCSE ’14
(2014), 695–700.

[6] Corbett, A.T. and Anderson, J.R. 1995. Knowledge

Tracing: Modeling the Acquisition of Procedural
Knowledge. User Modeling and User-Adapted
Interaction. 4, 4 (1995), 253–278.

[7] Helminen, J. et al. 2012. How Do Students Solve Parsons
Programming Problems? — An Analysis of Interaction
Traces. ICER ’12 (2012), 119–126.

[8] Hosseini, R. et al. 2014. Exploring Problem Solving
Paths in a Java Programming Course. PPIG ’14 (2014).

[9] Hosseini, R. and Brusilovsky, P. 2013. JavaParser: A
Fine-Grain Concept Indexing Tool for Java Problems.
AIEDCS ’13 (2013), 60–63.

[10] Ihantola, P. et al. 2015. Educational Data Mining and
Learning Analytics in Programming: Literature Review
and Case Studies. ITiCSE WG ’15 (2015), 41–63.

[11] Kasurinen, J. and Nikula, U. 2009. Estimating
Programming Knowledge with Bayesian Knowledge
Tracing. ITiCSE ’09 (Aug. 2009), 313–317.

[12] Koedinger, K.R. et al. 2010. A data repository for the
EDM community: The PSLC DataShop. Handbook of
educational data mining. 43.

[13] Koedinger, K.R. et al. 2012. The Knowledge-Learning-
Instruction Framework: Bridging the Science-Practice
Chasm to Enhance Robust Student Learning. Cognitive
Science. 36, 5 (Jul. 2012), 757–798.

[14] Newell, A. and Rosenbloom, P.S. 1981. Mechanisms of
skill acquisition and the law of practice. Cognitive skills

and their acquisition. 1–56.

[15] Papancea, A. et al. 2013. An Open Platform for
Managing Short Programming Exercises. ICER ’13
(2013), 47–51.

[16] Piech, C. et al. 2012. Modeling How Students Learn to
Program. SIGCSE ’12 (2012), 153–158.

[17] Rivers, K. and Koedinger, K.R. 2014. Automating Hint
Generation with Solution Space Path Construction. ITS
’14 (2014), 329–339.

[18] Rivers, K. and Koedinger, K.R. 2015. Data-Driven Hint
Generation in Vast Solution Spaces: a Self-Improving
Python Programming Tutor. International Journal of
Artificial Intelligence in Education [pre-release]. (2015).

[19] Soloway, E.M. 1986. Learning to Program = Learning to
Construct Mechanisms and Explanations.
Communications of the ACM. 29, 9 (Sep. 1986), 850–
858.

[20] Stamper, J.C. and Koedinger, K.R. 2011. Human-
Machine Student Model Discovery and Improvement
Using DataShop. AIED ’11 (2011), 353–360.

[21] VanLehn, K. et al. 2007. What’s in a Step? Toward
General, Abstract Representations of Tutoring System
Log Data. UMAP ’07 (2007), 455–459.

[22] Yudelson, M. V. et al. 2014. Investigating Automated
Student Modeling in a Java MOOC. EDM ’14 (2014),
261–264.

