
Learning Curve Analysis for
Programming: Which Concepts do
Students Struggle With?

Kelly Rivers, Erik Harpstead, and Ken Koedinger

Educational Data Mining for Programming

● ITiCSE working group paper on EDM and Learning Analytics in Programming
○ State of the art- focused on simple metric analysis, not so much on learning of content in code

● Plenty of approaches have been developed in the more general fields of
learning science, like intelligent tutoring systems and educational data mining

○ Defining knowledge components as the concepts students exercise while working
○ Investigating how students learn knowledge components over time using learning curves
○ Highlighting potential shortcomings of instructional interventions

2

Research Goal

How can we apply knowledge component modeling and
learning curve analysis directly to open programming tasks?

3

Background

4

What is a Knowledge Component (KC)?

● A Knowledge Component (KC) is “...an acquired unit of cognitive function or
structure that can be inferred from performance on a set of related tasks”
(Koedinger, Corbett, & Perfetti, 2012)

● A unifying formalism for things like skill, concept, principle, fact, schema,
production rule, thing-to-be-learned, etc.

● Math example: finding the area of a circle

5

Learning Curve Analysis (LCA)

● First created to analyze production rules in
the LISP Tutor (Anderson, Conrad & Corbett, 1989)

● Additive Factors Model (AFM)- developed
to evaluate cognitive models by statistically
fitting them to data (Cen, Koedinger & Junker, 2006)

● Now used in Datashop
(pslcdatashop.web.cmu.edu) to provide
visual feedback and exploratory data
analysis to tutor developers (Koedinger et al,

2010)

6

Learning Curves

7

KC Learning Curves

8

Additive Factors Model (AFM)

● AFM is a special form of mixed effects logistic regression for modeling student
performance over time which estimates:

○ Individual student intercepts (capturing initial ability)
○ KC intercepts (capturing relative difficulty of each KC)
○ KC slopes (capturing general learning rate of each KC)

● Fit estimates from AFM can be used to plot learning curves against the actual
student performance data and categorize different learning patterns

9

Questions for Applying LCA

● What are the

○ KCs

○ Opportunities

○ Error Rates

● of programming in an open editor?

10

Methodology

11

What are the KCs of Programming?

● Performance: test cases/constraints?

○ Not transferrable across problems

● Cognitive function: algorithm/plan implementation?

○ Difficult to define the opportunities for these KCs

○ Though it has been done before...

12

Previous Work: The LISP Tutor

● Heavily structured editor for tutoring LISP
○ Immediate feedback after every token written

● Authored 500 production rule KCs that
determined when to apply specific code tokens

Production Rule: p-insert
IF the goal is to insert one element into a list
THEN code cons and set subgoals:

To code the element
To code the list

Source: Anderson, Conrad, & Corbett, 1989
13

What are the KCs of Programming?

● Program tokens - AST nodes?

○ Easily modeled by matching tokens to underlying program representation

■ AST- abstract syntax tree

○ Can be used as a starting representation of algorithmic concepts

def helloWorld():
 return 'Hello World!'

C
O

D
E

A
ST

14

What are the Opportunities of Programming?

● Traditional tutoring systems: every step is executed separately, every step is
an opportunity

● A task/problem is composed of multiple steps, where each step usually
corresponds to one KC

● An opportunity occurs the first time a student submits an answer to a step;
following attempts are not counted after feedback is given

15

What are the Opportunities of Programming?

● Open coding: all steps in the task are combined into one program, which is
modified in an iterative design process

● Our definition: a programming step is a deliberate feedback request by the
student (running the compiler, running test cases, asking for help)

● Each step is composed of opportunities for all of the token KCs that occur in
the code. These opportunities are evaluated in parallel.

● KC Model Test: First-Attempt-Only vs. All-Attempts

○ Do we count every student submission as an opportunity or only their first attempt at the

problem?

16

How Do We Measure Correctness in Programming?

● Whole program correctness: test cases

○ Can’t use this for individual KCs, since one incorrect KC will penalize the others

● More syntactically detailed correctness: which tokens change between the
current state and a correct state?

○ Use prior work on hint generation to determine what the best goal state is, given the current state
(Rivers & Koedinger, 2014)

○ Then can determine the changed tokens by comparing the two ASTs to find semantic differences

17

How Do We Measure Correctness in Programming?

● A token KC is incorrect when:

○ Commission error: The token occurs in the edit between the current state and the goal state

○ Omission error: The token is missing from the solution and this is the last attempt the student

makes

● A token KC is correct when...

○ Do we evaluate if a KC is correct every time a student submits, or only when the relevant code

is modified?

○ KC Model Test: All-Steps vs. Modified-Steps

■ All-Steps Model: A state is correct when it is not incorrect

■ Modified-Steps Model: A state is correct when the token occurs in the edit between the

previous attempt and this attempt, or this is the first attempt
18

KC Model Formats

First Attempt All Attempts

Modified Steps Traditional tutor approach- only
count the first opportunity for
each KC

Count every opportunity where the
given KC has changed

All Steps Count the first opportunity in
every session

Count every opportunity for every
KC

19

Analysis

20

1. Annotate data with KC labels
2. Upload labeled data to Datashop to fit AFM
3. Using AFM estimates, scrutinize individual KC learning curves for interesting

cases

Analysis Plan

21

Data

● Study run in Spring 2016 with two Carnegie Mellon University CS1 courses
○ Study on usage of hints, but we’re not looking into that just yet

● 40 optional practice problems (ranging from basic expressions to dictionaries
and lists)

● 89 students chose to participate, generated 2907 submissions and 380 hint
requests

22

Model Generation

1. Generate a solution space
2. For each problem, find the set of KCs used in the teacher’s solution
3. For each submission:

a. Use hint generation to get the code to a parseable state (by fixing syntax)
b. Identify the closest goal state (using path construction algorithm)
c. Use a tree differ to find all edited AST nodes between the state and the goal
d. Apply tags according to the model rules

23

Results- what are we looking for?

Typical learning curve Not Enough Data Already Learned

No Learning Still Learning

Good Learning

24

Results - Overview
First Attempt All Attempts

Modified Steps

All Steps

25

Results- KC overview

● Common Categories: Too little data, No learning
● Medium Categories: Already learned, Good learning
● Rare Categories: Still learning

Caution: these can change!
26

Too Little Data KCs

27

No Learning KCs

28

● Backwards Learning
○ Assign, Attribute, Power, *, >

● No Learning
○ Compare, Subscript, Index, +, //, %, ==, String

● Spikey Learning Curves
○ Return, Binary Operation, Function Call, <,
○ Variable Name, Number

Already Learned: Function Headers...

● Only needed in first 6 problems; later problems provided starter code
○ Possible that all mistakes are being caused by syntax

29

… and Control Structures?

● If and For statements appear to be easy to use
● While loops are harder to evaluate, since we didn’t have enough problems!

30

Observed Learning: Boolean Operations

● Students did seem to improve in using and expressions
● Or expressions not being used as much

31

Extra! Validation with student intercepts

● Learning curves are evaluated using AFM models
○ These models use different intercepts for the set of KCs and for individual students

● Student intercepts- supposed to model the student’s prior learning/ability
○ Can be validated by looking at student’s actual exam scores!

● Correlation between student intercepts and student exam scores: 0.377
○ The model as a whole is moderately correlated with student outcomes

32

Final Thoughts

33

Main results

● We envisioned a new way to represent programming KCs and steps
● We evaluated learning curve results for programming data generated in a

modern, unstructured coding context

34

Limitations

● Using AFM and learning curves in non-traditional ways
● Changing representations of steps and correctness
● Not using data from a mastery-paradigm system

○ Also, programming KCs are generally wonky

● Currently not counting syntax changes in KC modeling
● Current modeling assumes a very granular view of programming KCs

35

Alternative Approaches

● Categorize some nodes into larger classes
○ <, >, <=, >=, ==, != are all one type; in and not in are another

● Use AST node context instead of type
○ Instead of ‘Boolean comparison’, ‘If test’
○ Or combine the two!

● Modify KCs looked at per problem
○ Use student’s goal state instead of teacher’s

● Modify correctness of KC steps
○ Maybe only highest-level type in an edit counts, not interior nodes

● Probably tons more!
○ What do you think?

36

Acknowledgements

Erik Harpstead and Ken Koedinger

Jason Imbrogno

This work was supported in part by Graduate Training Grant awarded to Carnegie
Mellon University by the Department of Education (# R305B090023).

37

The Additive Factors Model

38

