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Figure 1: A student program before and after normalization. 

Individualized feedback and next-step hints can significantly 
improve student learning. However, feedback takes much time to 
create, and as course sizes scale it may become impossible to 
create feedback with manpower alone. We can create feedback 
ahead of time by matching student solution states to hint 
messages, but this does not scale with the number of possible 
solutions in domains with complex solution formats, such as 
programming. Therefore, we’d like to generate hint messages using 
collected data rather than expert contributions. 
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SOLUTION SPACE 

CANONICALIZATION 

A solution space is a graph covering paths that students take while 
working on a complex problem. Each state in the graph is a 
partially-formed solution that a student might reach while working. 
These states can be measured by a test function which determines 
their correctness. 
 
To create a solution space, we collect the states that students 
generate while working on a specific problem. Since student work 
is highly variable at a superficial level, we use canonicalization to 
reduce the solutions down to a normalized version 

Canonicalization states a student solution and runs various 
semantics-preserving transformations on it to preserve the 
function of the solution while removing any unnecessary details. In 
Figure 1, the student’s code is anonymized (so that variable name 
differences don’t matter). It also has an unnecessary equality check 
removed, and a variable assignment is propagated through the 
code. 

PATH CONSTRUCTION 

The states in the solution space can be constructed easily enough, 
but we still need the edges that will go between them. These edges 
will be edits required to get a student from one state to another, 
and we’ll use them to generate hints. To find the best possible hint 
to give to a student at a particular solution state, we follow the 
following three steps: 
 
Step 1: Identify Optimal Goal State 
First, we need to determine what the student’s intended final 
solution is. We do this by finding the closest correct state that 
currently exists in the solution space. Then, we find all the changes 
that exist between the current state and the correct state, and 
using the test function reduce them to only include those edits 
which are essential. These edits, when used on our current state, 
create the optimal goal state. 
 
Step 2: Find Valid Intermediate States 
Once we know what the start state and end state are, we can find 
all edits that exist between the two, and then generate all possible 
combinations of edits. Each combination of edits, when applied to 
the start state, creates a possible intermediate state that a student 
could next go to in their process of solving the problem. We then 
filter these states to remove any that are not valid, where a valid 
state must be well-formed, closer to the goal than the start state, 
and at least as correct as the start state. 
 
Step 3: Create Optimal Edit Path 
Once we’ve narrowed down the possible next states to include only 
valid ones, we choose a sequence of steps that will lead from the 
start state to the goal state. Each step can be delivered to the 
student separately, so that they have a chance to make their own 
changes at any point in the process. At each stage, the next step is 
chosen by finding the most desirable next state, where a state is 
desirable if it has been seen before, if it is near the current state, if 
it has a high score, and if it’s close to the goal. 

def charCount(text): 
    s = ”” 
    for i in range(len(text)): 
        if(isLetterOrDigit(text[i]) == True): 
            s = s+text[i] 
    cC = len(s) 
    return cC # You write this! 

def charCount(v0): 
    v1 = '' 
    for v2 in range(len(v0)): 
        if isLetterOrDigit(v0[v2]): 
            v1 = (v1 + v0[v2]) 
    return len(v1) 

def findPatternAtIndex(dna, pattern, startIndex): 
    count = 0 
    for i in range(startIndex, len(pattern) + startIndex): 
        if len(dna) - startIndex <= len(pattern): 
            break 
        elif symbolsMatch(dna[i], pattern[i - startIndex]) == True: 
            count += 1 
    return count == len(pattern) 

Hint: Starting at line 1 in the function, replace the operator <= with the operator < 

Figure 2: The hint message generated for the given student solution 

Figure 3: Number of edits required to get from an incorrect solution in the dataset to the 
state’s goal. 

Figure 4: Time taken by the algorithm to generate a next step, based on number of edits 
between the state and the original goal. The algorithm grows exponentially, which makes it 

intractable for solutions very far away from the goal, but these far-off solutions are rare. 


