
Automating Hint Generation with Solution Space Path Construction
Kelly Rivers and Kenneth R. Koedinger

Figure 1: A student program before and after normalization.

Individualized feedback and next-step hints can significantly
improve student learning. However, feedback takes much time to
create, and as course sizes scale it may become impossible to
create feedback with manpower alone. We can create feedback
ahead of time by matching student solution states to hint
messages, but this does not scale with the number of possible
solutions in domains with complex solution formats, such as
programming. Therefore, we’d like to generate hint messages using
collected data rather than expert contributions.

PROBLEM

Acknowledgements
This work was supported in part by Graduate Training Grant awarded to
Carnegie Mellon University by the Department of Education (# R305B090023).

SOLUTION SPACE

CANONICALIZATION

A solution space is a graph covering paths that students take while
working on a complex problem. Each state in the graph is a
partially-formed solution that a student might reach while working.
These states can be measured by a test function which determines
their correctness.

To create a solution space, we collect the states that students
generate while working on a specific problem. Since student work
is highly variable at a superficial level, we use canonicalization to
reduce the solutions down to a normalized version

Canonicalization states a student solution and runs various
semantics-preserving transformations on it to preserve the
function of the solution while removing any unnecessary details. In
Figure 1, the student’s code is anonymized (so that variable name
differences don’t matter). It also has an unnecessary equality check
removed, and a variable assignment is propagated through the
code.

PATH CONSTRUCTION

The states in the solution space can be constructed easily enough,
but we still need the edges that will go between them. These edges
will be edits required to get a student from one state to another,
and we’ll use them to generate hints. To find the best possible hint
to give to a student at a particular solution state, we follow the
following three steps:

Step 1: Identify Optimal Goal State
First, we need to determine what the student’s intended final
solution is. We do this by finding the closest correct state that
currently exists in the solution space. Then, we find all the changes
that exist between the current state and the correct state, and
using the test function reduce them to only include those edits
which are essential. These edits, when used on our current state,
create the optimal goal state.

Step 2: Find Valid Intermediate States
Once we know what the start state and end state are, we can find
all edits that exist between the two, and then generate all possible
combinations of edits. Each combination of edits, when applied to
the start state, creates a possible intermediate state that a student
could next go to in their process of solving the problem. We then
filter these states to remove any that are not valid, where a valid
state must be well-formed, closer to the goal than the start state,
and at least as correct as the start state.

Step 3: Create Optimal Edit Path
Once we’ve narrowed down the possible next states to include only
valid ones, we choose a sequence of steps that will lead from the
start state to the goal state. Each step can be delivered to the
student separately, so that they have a chance to make their own
changes at any point in the process. At each stage, the next step is
chosen by finding the most desirable next state, where a state is
desirable if it has been seen before, if it is near the current state, if
it has a high score, and if it’s close to the goal.

def charCount(text):
 s = ””
 for i in range(len(text)):
 if(isLetterOrDigit(text[i]) == True):
 s = s+text[i]
 cC = len(s)
 return cC # You write this!

def charCount(v0):
 v1 = ''
 for v2 in range(len(v0)):
 if isLetterOrDigit(v0[v2]):
 v1 = (v1 + v0[v2])
 return len(v1)

def findPatternAtIndex(dna, pattern, startIndex):
 count = 0
 for i in range(startIndex, len(pattern) + startIndex):
 if len(dna) - startIndex <= len(pattern):
 break
 elif symbolsMatch(dna[i], pattern[i - startIndex]) == True:
 count += 1
 return count == len(pattern)

Hint: Starting at line 1 in the function, replace the operator <= with the operator <

Figure 2: The hint message generated for the given student solution

Figure 3: Number of edits required to get from an incorrect solution in the dataset to the
state’s goal.

Figure 4: Time taken by the algorithm to generate a next step, based on number of edits
between the state and the original goal. The algorithm grows exponentially, which makes it

intractable for solutions very far away from the goal, but these far-off solutions are rare.

