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ABSTRACT
We examine a large dataset collected by the Marmoset sys-
tem in a CS2 course. The dataset gives us a richly detailed
portrait of student behavior because it combines automat-
ically collected program snapshots with unit tests that can
evaluate the correctness of all snapshots. We find that stu-
dents who start earlier tend to earn better scores, which is
consistent with the findings of other researchers. We also
detail the overall work habits exhibited by students. Fi-
nally, we evaluate how students use release tokens, a novel
mechanism that provides feedback to students without giv-
ing away the code for the test cases used for grading, and
gives students an incentive to start coding earlier. We find
that students seem to use their tokens quite effectively to
acquire feedback and improve their project score, though
we do not find much evidence suggesting that students start
coding particularly early.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Sciences Education—Computer Science Education

General Terms
Human Factors, Measurement

Keywords
computer science education, CS2, novice programmers

1. INTRODUCTION
In the United States, recent graduates with Computer Sci-

ence degrees can expect high starting salaries [15] and ex-
cellent job prospects [14]. However, students earned about
the same number of Computer Science Bachelors’ in 2008
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as in the mid 1980s [4], despite large increases in both over-
all college enrollment and the overall number of Bachelors’
degrees awarded. The job market seems to be demanding
students with the knowledge and skills taught in undergrad-
uate Computer Science departments, yet students have not
flooded into the CS major.

In fact, supplying the growing technological job market
with knowledgable young computer scientists has proven
quite difficult. Attrition rates in undergraduate CS pro-
grams are high [2], and there’s evidence of a gap between
what faculty think students should be able to do and what
students actually can do [12]. High school students do not
seem to know what computer science is [5], let alone show
much interest in majoring in the discipline. Men earn about
80% of undergraduate computer science degrees in the United
States [4], and this large gender gap is possibly keeping tal-
ented women out of a dynamic, exciting major.

Given that many introductory CS students struggle with
learning to program, and that most attrition happens by
the second year of study [2], helping students learn to pro-
gram seems like a reasonable way to keep students in the
major. There have been excellent recent efforts at collect-
ing data to help us better understand novice compilation
behavior[10, 17, 18], and novice programming habits [6, 13,
9]. This empirical work has allowed us to begin addressing
key questions such as “How much time do students spend on
programming assignments?”, and“How much benefit do stu-
dents get from starting early?”. However, our understanding
of novice programmers is still quite incomplete, and can be
improved. We need a deep and nuanced understanding of
how students learn to program before we can know where to
make improvements.

This paper makes several contributions:

• We combine passively collected snapshots with unit
tests to build a richly detailed portrait of student work
habits.

• We find a statistically significant correlation between
starting an assignment early and earning a higher score.
This supports the conclusions of prior studies [8, 1, 7].

• We explore students’ work habits in detail, examining
what hours of day students work, how much work is
done the day before and the day of the deadline, and
the total amount of time spent coding on each project.
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course CS-2
semester Spring 2006
language Java
# projects 6
# students 96
# snapshots 55,070
# compilable snapshots 37,401

Table 1: Overview of the Marmoset dataset.

• We examine students’ use of release tokens, first intro-
duced by the Marmoset data collection and automated
testing system [16], showing evidence that suggests the
tokens help students achieve higher scores without giv-
ing away the code to all of the test cases.

2. THE MARMOSET DATASET
In this work, we analyze data collected by the Marmoset

system [16] in Spring 2006 during a CS2 course at the Uni-
versity of Maryland. Marmoset is an automated testing and
data collection framework that combines three key compo-
nents: a client-side data collection plugin for students’ IDEs,
a central server for testing student submissions against unit
tests, and a novel token-based incentive system for revealing
select feedback about the test cases (we give more details
about release tokens in Section 2.2). The combination of
fine-grained snapshots and detailed unit tests is particularly
important, as we can run every snapshot against the unit
tests for that project and pinpoint the precise set of changes
that allowed a student to pass challenging test cases.

2.1 Snapshot Collection with the Eclipse Plu-
gin

Marmoset uses an Eclipse plugin to capture snapshots of
student files at each save event. Because Eclipse performs
incremental compilation, the snapshots are not necessarily
part of a traditional compile-edit cycle, producing a dataset
qualitatively different than the compilation-based snapshot
datasets collected by other researchers [10, 17, 13]. How-
ever, like these other datasets, our dataset is file-grained.
Table 1 breaks down the overall statistics of the Marmoset
snapshots.

2.2 Release Testing
Release tests were designed to achieve two goals: 1) Pro-

vide feedback about the correctness of student code without
giving away the code to the test cases, and 2) Give students
an incentive to start coding early. The first goal is to pre-
vent students from simply “coding to the tests”, while the
second goal is a reaction to the widely held belief by faculty
that students simply do not start coding early enough finish
the project.

Students using Marmoset can upload their code to a cen-
tral server, which executes their code against a series of unit
tests. These test cases are partitioned into three categories:

• Public tests: The full source code of public tests is
given to students with the project. Public tests are
executed against all submissions to the server, and the
results are always visible to students. All projects in
this dataset had a couple of public tests to help stu-
dents get started testing their code.

• Release tests: The source code of release tests is
never revealed to students. Release tests are run against
every submission, although students must spend a re-
lease token to receive feedback about the results of re-
lease testing. Students have three release tokens, and
each token takes 24 hours to regenerate after use. In
order to use a token, students must upload their code
to the Marmoset server, authenticate themselves to the
Marmoset server through a web interface, and then
choose to spend a token. Using a release token reveals
the number of release tests passed and failed, as well
as additional feedback about the first two failed tests,
such as the names of the test cases and the stack trace
of any exceptions generated by the test.

• Secret tests: Neither the source code for the tests
nor the outcome of running the test cases is revealed
to students. Secret tests are equivalent to the de facto
method of grading programming assignments for in-
structors who do not provide students with any pre-
deadline feedback.

Theoretically, the scarcity of the release tokens should in-
centivize students to start working early, and to test their
code thoroughly before spending a token. In our experi-
ments, we examine students’ use of release tokens over time.

2.3 Other Marmoset Details
The Marmoset snapshots used in this work are a rich, pow-

erful resource in helping understand novice programmers.
However, the data have a number of characteristics, as well
as key limitations, which should be kept in mind when as-
sessing this work:

• There have not been any controlled studies of the re-
lease token mechanism, so it is very difficult to draw
any strong conclusions about the effectiveness of this
system. The lack of controlled studies is due to logis-
tical and policy hurdles rather than any fundamental
limitation of the system.

• The automated grading makes extensive use of unit
tests, which means that students are programming to
an API rather than writing code from scratch. We
cannot use this data to evaluate students’ design abil-
ities, or to understand how they would program when
beginning with a blank screen.

• The dataset is from a CS2 course, so the students are
not true novices. Attrition rates are typically lower in
CS2 than in CS1, so this data may serve more use in
determining what helps students perform better. It is
worth noting that Marmoset has been used before in
CS1 courses, though we do not have access to the data
collected.

• The dataset only includes scores for the functional cor-
rectness of a project as computed by the unit tests.
Each assignment was also assessed manually for style,
but we do not have access to those scores, nor do we
have the students’ exam scores. Thus, we are only able
to consider the students’ ability to write functionally
correct code.

• The data collected only captures the amount of time
students actively spend programming. We are unable
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to measure the time spent reading the textbook, out-
lining the program on paper or the whiteboard, reading
online resources, or any of the other work that con-
tribute to a successful programming assignment. This
limitation is not unique to Marmoset; all automatic
snapshot capture systems are limited to data they can
easily collect.

3. RELATED WORK
Some work has already been done in analyzing large cor-

puses of student data in order to find useful trends and cor-
relations. For example, several researchers have examined
compilation behavior, in order to determine how students
react to errors and which errors are most common [10, 9].
Correlations have also been found between students’ rela-
tionships with errors and their midterm scores which can
be used to identify at-risk students [17]. Some researchers
look more at how student behaviors change over time, using
Bayesian learning models [11] and learning analytics through
visualizations [3].

Closer to our area of study, analysis has also been done
on student submission behavior and how it affects learning.
Some researchers have conducted work very similar to ours,
using submission data from Web-CAT to find that students
who submitted more and earlier were less likely to fail the
assignment [1, 7]. In addition, it has also been shown that
students who submit late on the first assignment are more
likely to continue submitting late and do more poorly in the
class [8]. Fenwick et al have also found trends suggesting
that students who program in more ’sessions’ (doing more
incremental work) are more likely to achieve higher grades
[9]. We aim to replicate and expand on this work, while
also more closely examining the effects of hidden tests and
release tokens.

4. EXPERIMENTS
The Marmoset dataset combines snapshots with unit tests

to give researchers a detailed view into student work pat-
terns (i.e. when they are working, what they are changing)
and the correctness of their code (i.e. what test cases are
they passing). Such fine-grained data allows us to see the
precise snapshot where students have a breakthrough in the
correctness of their program, as well as what they were doing
before and what they do after. By grouping the snapshots
into estimated “work sessions”, we can look at factors within
a work session that increase or decrease the score achieved
at the end of the session.

4.1 Overview of the Data
The dataset has over 37,000 compilable snapshots from

96 students over six CS2 projects. Table 2 shows the mean
and median scores for each project, as well as the number of
students with at least one submission for each project (sub-
mitting to the server is required for credit on a project; the
snapshots are purely for research and automated backups).
Students receive zero points if they fail to make a submis-
sion for a project; the true mean and median values would
be slightly lower if we included those default scores of zero.

Figure 1 shows the distribution of snapshots over the hours
of the day. We see a lot of activity between 4pm and 6pm
(16:00 to 18:00). We initially thought this was because dead-
lines were always at 6pm and we were seeing a rush to com-

Project median mean
# students w
a submission

1 100% 90.8% 90
2 82.9% 60.2% 89
3 95.0% 82.2% 90
4 92.2% 82.2% 85
5 100% 85.3% 84
6 90.0% 80.1% 81

Table 2: For each project, we report the mean and
median scores, as well as the number of students
(out of 96) who made at least one submission.

plete the project; however, we looked at only the snapshots
that occurred more than 24 hours before the deadline, and
found essentially the same shape as in Figure 1. Thus, if stu-
dents prefer working 4pm to 6pm, then setting the deadline
a couple of hours later might allow students to work at their
preferred time without the added pressure of an impending
deadline.

Figure 1: Number of snapshots distributed over
hours of the day. Note the spike in activity between
4pm and 6pm.

Figure 2 shows the number of snapshots per day in the 10
days leading up to each project deadline (students typically
have 10 days to complete a project). The bar for each day
is broken up into positive and neutral or negative snapshots.
Positive snapshots increase the number of passing test cases,
and hence the score, from the previous snapshot, while neu-
tral/negative snapshots either make no improvements, or
decrease the score. We see a lot of improvements made the
day before, and the day of, the project deadline, which sug-
gests that many students are doing substantial work in the
48 hours before the deadline. This may mean that students
are not, in fact, starting work early enough. We more work
and more improvements 5 days before the deadline that we
do 3 or 4 days before. We believe this occurs because four
out of six deadlines were on a Thursday, meaning students
worked more on Saturdays than on Sundays.

Figure 3 compares each student’s start time (i.e. the time
before the deadline of their first snapshot, to the nearest
hour) to the final score they ultimately achieved. The re-
lationship is statistically significant, and gives a clear in-
dication that starting an assignment correlates with better
scores. Note that the test cases may not be exhaustive, and
that there may be differences in quality or correctness be-
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Figure 2: Number of snapshots per day leading up to
the deadline. Positive snapshots are snapshots that
increase the score from the previous snapshot (i.e. a
positive delta), while negative or neutral snapshots
have an identical or lower score than the previous
snapshot.

tween the programs that earned 100% that these test cases
are unable to identify.

4.2 Work Sessions
Marmoset collects a snapshot whenever students save their

files, so snapshots are not independent events. Two students
may save files at very different intervals due to personal id-
iosyncrasies that have nothing to do with their programming
ability. Thus we have to take care when aggregating infor-
mation about snapshots.

In order to get a more accurate picture of student work
habits, we have clustered each student’s snapshots into es-
timated “work sessions” using the very rough heuristic that
snapshots less than 20 minutes apart are part of the same
work session. We have not observed the work habits of any of
the students in this data set, so we lack a good understand-
ing of student work habits needed to validate our heuristic.
However, we expect that even an approximate clustering of
the snapshots will give us a more accurate picture of stu-
dent work patterns than treating each snapshot indepen-
dently would. Figure 4 shows the relationship between the
estimated time spent programming in each session and the
score differential (i.e. the difference in the score between
the first and last snapshot of a work session). There is a
statistically significant relationship, though the correlation
is fairly weak.

Figure 5 shows the relationship between the total esti-
mated time spent programming on each project and the fi-
nal score on the project. The relationship, while statistically
significant, is relatively weak, and could simply indicate that
students who spent only a few minutes on an assignment end
up with extremely low scores.

Figure 3: The X-axis shows the time of the first
snapshot (i.e. when the student began writing the
program), while the Y-axis shows the final score the
student eventually achieved.

4.3 Release Tokens
Students using Marmoset are given a set of public unit

tests, while other unit tests, called release tests, are stored
on the server. Students can upload their code to the server,
spend a release token, and see the number of release tests
passed and failed, as well as additional feedback about the
first two release tests which failed. Furthermore, students
only have 3 release tokens, and each token takes 24 hours to
regenerate.

The goals of release tests are to give helpful feedback with-
out giving away the test cases, and to create an incentive for
students to start programming assignments early. We find,
however, that students only used an average of 2.4 release
tokens per assignment, and that about 55% of the total re-
lease tokens used were deployed on the day of the deadline,
or the preceding day. These data suggest that students are
using release tests to get feedback, but are not necessarily
starting early to use more than three release tokens.

Figure 6 shows the relationship between the number of
release tokens used per work session (maximum of 3) and
the difference between the score at the beginning and end
of the session. The relationship is statistically significant,
though the model does not explain much of the variance.

Table 3 splits up the work sessions by whether they use
at least one release token, then by whether they increase
(positive), decrease (negative), or have no effect (neutral)
on the score. In other words, a positive work session means
that the score for the snapshot at the end of the session is
higher than the score for the snapshot at the beginning. The
differences are statistically significant (p < 0.001) according
to a Chi Squared analysis.
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Figure 4: Relationship between the length of esti-
mated work sessions and the change in project score
from the start to the end of the session.

positive neutral negative total

used >= 1 token 515 470 36 1021
no tokens used 959 2129 175 3263

total 1474 2599 211 4284

Table 3: Work sessions divided up, first by whether
they increase (positive), decrease (negative), or have
no effect (neutral) on the score, then by whether at
least one release token was used in the session.

5. CONCLUSIONS AND FUTURE WORK
Combining automatically collected program snapshots with

unit tests has given us a detailed picture of student work
patterns, revealing some obvious facts (i.e. students do very
little work between 4am and 8am), as well as some less ob-
vious facts (i.e. students work more on Saturdays than on
Sundays and more between 4pm and 6pm than any other 2
hour block of time).

Unsurprisingly, we find that students do the majority of
their work within 48 hours of the deadline, and that students
who start earlier tend to earn better grades, which supports
the findings of previous researchers [8, 1, 7]. We found a
weak relationship between the total amount of time coding
and the final score, though this may simply reflect the fact
that even the best students must spend a minimum amount
of time coding the solution.

We also examined the use of release tests in more detail.
We found that students used an average of 2.4 release tests
per project, that work sessions that used one or more release
test were statistically more likely to improve the student’s
score than work sessions that do not use a release token,
and that using additional release tokens in a work session
tends to improve the session. This evidence suggests that
students are effectively using their release tokens to obtain
feedback and improve their scores. In turn, this suggests

Figure 5: Relationship between the total estimated
time spent writing code and the final score on the
project.

that the release tokens are indeed providing valuable feed-
back to students without revealing the code to the test cases.
This achieves the first design goals of release tests: To pro-
vide limited but useful feedback to students. Without a
controlled study of release tokens, it will be difficult to show
that the release tokens are achieving the second design goal:
influencing students to start coding earlier. The data in pa-
per, namely that students use an average of 2.4 tokens per
project and that 55% of release tokens are used in the last
two days before a deadline, suggest that students are not
starting their projects particularly early. In fact, it’s possi-
ble that the tokens have the unanticipated side-effect of dis-
couraging students from writing their own test cases, since
even procrastinators who start coding the same day that
the project is due know that they have at 3 tokens to use.
We know that the instructors who regularly use the system
eventually decreased the number of release tokens available
from 3 to 2 in order to further discourage procrastination.

In the future, we hope to conduct a controlled study of
release tokens, where an experimental group has release tests
and release tokens, while the control group has secret tests.
This study would be a tremendous help in understanding
how students respond to the incentives offered by release
tokens.
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