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ABSTRACT
Educational data mining and learning analytics promise bet-
ter understanding of student behavior and knowledge, as
well as new information on the tacit factors that contribute
to student actions. This knowledge can be used to inform
decisions related to course and tool design and pedagogy,
and to further engage students and guide those at risk of
failure. This working group report provides an overview of
the body of knowledge regarding the use of educational data
mining and learning analytics focused on the teaching and
learning of programming. In a literature survey on mining
students’ programming processes for 2005–2015, we observe
a significant increase in work related to the field. However,
the majority of the studies focus on simplistic metric analy-
sis and are conducted within a single institution and a single
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course. This indicates the existence of further avenues of re-
search and a critical need for validation and replication to
better understand the various contributing factors and the
reasons why certain results occur. We introduce a novel
taxonomy to analyse replicating studies and discuss the im-
portance of replicating and reproducing previous work. We
describe what is the state of the art in collecting and shar-
ing programming data. To better understand the challenges
involved in replicating or reproducing existing studies, we
report our experiences from three case studies using pro-
gramming data. Finally, we present a discussion of future
directions for the education and research community.

CCS Concepts
•General and reference → Surveys and overviews;
•Social and professional topics→ Computing educa-
tion; •Applied computing→Education; •Information
systems → Decision support systems; Data mining; Users
and interactive retrieval; •Security and privacy → Hu-
man and societal aspects of security and privacy;

Keywords
educational data mining; learning analytics; programming;
replication; literature review
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1. INTRODUCTION
Understanding why students succeed or fail in computer

science courses is a fundamental drive for computer science
education research (CSEd), yet, as a research community, we
are still struggling to routinely collect data to systematically
study and explore this as identified by Lister in 2010 [75].
This is despite initial promising works at the beginning of
the century [43, 59, 83, 116]. With the use of online learn-
ing systems has come a significant growth in the capture
and analysis of student performance data. This focus on
systematic collection and analysis of learner-oriented data is
also based in part on the drive to move from more subjec-
tive, anecdotally-oriented CSEd experiences, to empirically-
based, data-driven research methods. This strategy can
lead to more rigorous, higher-quality evaluation of proposed
teaching methods or interventions, as well as help in teasing
out the tacit factors that contribute to the observed learning
outcomes.

This ITiCSE 2015 working group focused on creating a
foundation for CSEd research based on mining data collected
as students work on programming problems. Literature sug-
gests that there has been a substantive rise in data collec-
tion for evidence-based research in programming. Little,
however, has been done to date on relating studies to each
other, categorizing the types of data and the ways in which
it is collected, or reproducing findings with similar data sets.
As such, the main objectives of this work have been to: (i)
systematically identify and analyse relevant works in the lit-
erature; (ii) meaningfully categorize these studies; and (iii)
identify discipline-specific challenges related to replication
and reproduction.

To address the above objectives, we identified and sur-
veyed existing literature in this area to gain an understand-
ing of the different approaches being used. We analyzed the
critical commonalities and differences in the tools and strate-
gies being used to collect and analyze data from student
work processes and artefacts, and examined issues and chal-
lenges related to reproducing prior studies and results. This
emphasizes the value in relating studies to each other and
encourage the reproduction—the deliberate re-investigation
of a question in a similar (but not necessarily identical)
context—of published studies. To better understand the
landscape of replication studies, we propose a taxonomy
that classifies existing works based on how three main crite-
ria, namely researchers, analysis methods, and production,
change with respect to the baseline study.

Our vision for routine data collection as students work on
classroom activities goes far beyond providing a solid ba-
sis for evaluating classroom research questions. Once re-
searchers become accustomed to systematically collecting
learner data to support research, these methods will eventu-
ally grow to see use by practitioners as well. In the future, by
routinely collecting performance and skill data as students
work in a course, data analytics and support tools can be
regularly applied to provide instructors with greater insight
into what is actually occurring in the classroom, opening up
new opportunities for identifying individual student needs,
providing targeted activities to students at the ends of the
learner spectrum, and personalizing the learning process.
This research aims to support moving toward a data-driven
practice of teaching that uses the best ideas from continuous
process improvement in a learning context.

To provide a head start to the process of replication, we

introduce a novel taxonomy that can help other researchers
to identify different types of replication studies, which pro-
vides an overview on what types of replications can be done
in general. This and challenges of replication in general are
discussed in Section 3. Section 4 describes how program-
ming data is collected, lists important attributes of the data
sets being used in current research and advocates for more
standardization in the reporting of meta-data and the use of
data collection infrastructures. Section 5 focuses on the issue
of reproducibility and includes three case studies that illus-
trate the challenges encountered when reproducing existing
studies. Finally, the article concludes with a discussion of
the grand challenges facing the field in Sections 6 and 7,
respectively.

2. LITERATURE SURVEY
The driving questions for the literature survey were the

following:

• What information about the teaching and learning of
programming can be gained through the analysis of
programming data?

• Which of that data can be collected and analyzed au-
tomatically?

• What are the challenges of using the study results in
practice?

2.1 Method
For the survey, we adopted a light version of the guidelines

for systematic literature reviews [70].

2.1.1 Identification of Relevant Literature
Constructing an effective search string for literature deal-

ing with “programming data” that can be “analyzed auto-
matically” proved infeasible. To search for literature, the
group started out with a set of relevant papers that should
be found with a database search (Gold Standard). Pilot
searches on several databases1 with varying search strings
returned too many irrelevant papers and few papers from our
Gold Standard. Even restricting the domain to the teaching
and learning of programming returned too many irrelevant
publications, and missed many relevant papers. The group
could not define a search string that resulted in an accept-
able balance between precision (result included only relevant
papers) and recall (result included all relevant papers).

To solve this problem, we identified a number of key venues
(see Table 1) that were searched manually. To ensure the
reliability of the search process, two independent reviewers
were allocated to each venue to search through the years
2010–2015 and include/exclude papers based on their titles
and abstracts. A description of the inclusion/exclusion cri-
teria can be found in Section 2.1.2. Since the inter-rated
agreement was almost 100%, the remaining years (2005–
2009) were searched by only one reviewer. To avoid a pre-
mature exclusion of potentially relevant papers, we adopted
an inclusive approach; all undecided papers were included
in a first step.

All included and undecided papers were then compiled
into a “master list” and checked by a second reviewer. After
this step, the master list contained 101 papers that were
subject to data extraction and quality assessment.
1We used the ACM and IEEE Digital Libraries, Scopus,
Springer Link and Google Scholar.
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Table 1: Venues searched for relevant articles, years of exploration, total articles explored, final articles
included after inclusion/exclusion criteria, data extraction, and quality assessment.

Number Articles
Venue Years of articles included

ACE – Australasian Computing Education Conference (ACM) 2005–2015 240 6
CSE – Computer Science Education (Taylor&Francis) 2005–2015* 168 4
EDM – International Conference on Educational Data Mining 2008–2015 327 6
ICER – International Computing Education Research Workshop 2005–2014 162 8
ITiCSE – ACM Annual Conference on Innovation and Technology in Computer Science Education 2005–2015 694 20
JEDM – Journal of Educational Data Mining 2009–2015* 34 2
Koli Calling – Conference on Computing Education Research 2005–2014 202 8
PPIG – Psychology of Programming Interest Group Annual Workshop 2005–2014 166 1
TOCE/JERIC – ACM Transactions on Computing Education / ACM Journal of Educational Re-
sources in Computing

2005–2015* 195 1

SIGCSE – The ACM Technical Symposium on Computer Science Education 2005–2015 1162 20
TLT – IEEE Transactions on Learning Technologies 2010–2015* 221 0

Total 3571 76
*January–June for 2015.

2.1.2 Inclusion/Exclusion Criteria
The inclusion of an article was determined based on the

following criteria:

• The programming problems are open-ended—We ex-
cluded systems that are custom-defined for certain types
of problems or algorithms as they are not easily trans-
ferable to other contexts. Regarding the programming
language, we included only languages or systems in
which programs are composed of statements and con-
trol structures in the form of text or textual blocks.
This includes all general-purpose programming lan-
guages, but also systems like Scratch, where programs
are composed of blocks that contain such elements.
Visual languages or systems, such as Kara [51] for ex-
ample, were excluded.

• Data collection relates to the programming process—
The data should make it possible to analyze the ap-
proaches that a student is taking while solving a prob-
lem and their way of working. This can include se-
quences of assessments or coding snapshots, meaning
that related multiple data points are collected, as well
as single data points collected a number of times, e.g.
a summary of compilation results for a class.

• Data collection and analysis is automated—This is es-
sential for facilitating real-time support and in con-
texts where human support is limited or restricted.
This is particularly critical in situations where tradi-
tional supervision does not scale, since students are
distributed and number in the thousands, like in many
MOOCs and institutions with very large classes.

• Length > 3 pages—Short papers were excluded.

2.1.3 Data Extraction and Quality Assessment
For data extraction, we developed a form based on the

driving questions for the literature survey, described above,
and Malmi et al.’s categorization of computing education
research [79]. Quality assessment was done together with
data extraction. For this purpose, we adapted the quality
criteria for research proposed by Downs & Black [34] and
Runeson & Höst [95] and added them to the data extraction
form.

The final data extraction form contained the following
main categories:

• Paper identification

• Methodological aspects of the research

• Context of the research, including details about the
course, the subjects, and the tasks the subjects had to
carry out.

• Data that was collected and how it was collected and
analyzed

• Overall results

• Quality assessment

All items of the data extraction sheet can be found in
Appendix A. Of the 101 articles that were left after the
inclusion/exclusion phase another 25 were excluded during
the data extraction phase. The full list of primary papers
can be found in Appendix B.

2.2 Results
We analyzed 76 papers distributed over the time period

from 2005 to 2015, as shown in Figure 1. As it can be seen,
the rate of papers being published on this topic has increased
rapidly over the past ten years. To determine whether this
was due to increased interest in the subject or whether it
was just due to more papers being published in the searched
venues, we also analyzed the number of papers greater than
3 pages long published in each venue per year. We found
that almost all of the chosen venues had a constant rate
of publication, the only exception being the International
Conference on Educational Data Mining, which has grown
rapidly over the past eight years (from 17 papers in 2008
to 91 papers in 2015). This implies that there is a general
increase in interest in educational data mining, in addition
to the subfield of educational data mining of programming
data.

The papers which met the inclusion criteria came from
almost all of the venues we investigated (see Table 1). The
two largest conferences, SIGCSE and ITiCSE, accounted for
40 (53%) of the included papers. A large number of included
papers were also published at the ICER conference (8/162).
In contrast, we found no papers that could be included from
TLT, and very few from the ACM Transactions on Com-
puting Education, previously known as JERIC (1/195), and
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the Psychology of Programming Interest Group Workshop
PPIG (1/166).

Our analysis will next explore the results of the data ex-
traction, starting from a thematic analysis of the research
goals, and finishing with the assessment of quality.

Figure 1: The number of included papers published
in each of the specified years. The different colors
indicate different levels of data collection, from low-
level (keystrokes) to high-level (submissions). Data
from 2015 includes only publications between Jan-
uary and June.

2.2.1 Research Goals
The research goal and motivation were extracted from

each article and subsequently analyzed by three researchers,
who performed a thematic analysis. The researchers first
labeled the extracts individually, after which the labels were
discussed jointly to form a common consensus on the main
themes and goals. During the process, three overall cate-
gories emerged: student, programming, and learning envi-
ronment. Articles that were placed within the student cat-
egory were concerned with, for example, predicting student
performance, student affect and estimating students’ knowl-
edge. Articles in the programming category were concerned
with for example, identifying programming behaviour and
strategies and errors made in programming, while the learn-
ing environment category was related to (students’ use of)
tools and automated testing, grading and feedback, and the
like.

For each category, a number of subcategories were identi-
fied. As is natural for such analysis, there were cases where
the original authors did not refer to their research goals us-
ing the same terminology that emerged during the thematic
analysis – in some cases, the terminology of the article re-
ferred to other subcategories. Such cases were resolved by
the researchers after careful analysis of each paper, and in
some cases, if a single category could not be agreed upon, the
article was placed in more than a single category. Such cases
were visible in works that focused on common errors from
the programming process, but also correlated those errors
with course outcomes, categorized under the programming
category, while work that focused on course outcomes and
students’ performance, but also analyzed students’ program-
ming errors and correlated those with course outcomes, was
categorized under the student category. The results of the
categorization are given in Table 2.

2.2.2 Approach
The “Approach” classification sought to identify in the pa-

pers the nature and breadth of the research undertaken. The
type of research was classified into one of six categories: case
study; constructive research; experiment; study; survey re-
search; or other. Multiple categories could be chosen, for
example both constructive research and study may be cho-
sen if the paper reported in depth on the development of a
tool and presented data on its use in a classroom setting. Of
the papers, 59 (78%) were considered as a study, where re-
sults reported data collected in a natural setting, such as in
class activity. This is in contrast to only 11 (14%) that were
classified as experimental research, where formalised experi-
mental environments were set up in order to collect the data.
This suggests that researchers prefer to collect programming
process data in situ, possibly hoping to understand student
programming behaviours as they occur in more natural en-
vironments. It is also important to highlight that 15 (20%)
were categorised as constructive research, suggesting there
is a perceived importance placed on reporting in detail the
construction of tools to aid in the collection of programming
process data.

Very few studies were founded on formal theories or known
pedagogical models. While many papers would mention
some underpinning educational theories, only 8 (11%) for-
mally referenced and utilised a specific theory or model in
the development of a tool and/or the analysis of the data
collected.

When considering the breadth of the research and data
presented, of key interest is that the majority of studies (62
studies, 81%) presented work conducted within just a single
institution. Reasons for the lack of multi-institutional work
(in particular data collection) are unclear. One perspective
may be the difficulties, or perceived difficulties, with data
privacy and ethical issues. However, as will be discussed
further in a later section, very few papers raised any issues
regarding the ethics or privacy of their work or data.

Few of the studies suggested any breadth of work in the
form of longitudinal data collection or data collected across
multiple courses. Only 15 (20%) studies presented work that
could be considered longitudinal in nature, where data was
collected from students over multiple offerings of a course or
courses. More positively, 26 studies (34%) presented data
captured across multiple courses. This however is still low,
and while proof of concept studies are important, it high-
lights that for rigour of work in the area, more studies must
be undertaken that seek to capture data from more than
just a single offering of a course.

Given the nature of the type and breadth of the data pre-
sented in the literature, it is unsurprising that there were
very few replication or reproduction studies represented. In-
deed, only 5 (7%) were studies that sought to replicate or
reproduce previously published work. Reasons for this low
result are unclear, however may relate to the infancy of work
in this area or inherent difficulties in building upon existing
work, whether this be for technical reasons or those relating
to privacy and ethics.

2.2.3 Context
Context sought to understand the programming language

and environment being used for process data collection. The
vast majority of studies focused on programming within a
course context (61 studies, 80%). Ten studies (13%) indi-
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Table 2: Categorization of the research goals
Category Short Description or Example Articles

Students’
Ability and knowledge Approaches for evaluating students’ knowledge of specific concepts [13,67,117]
Affective states Approaches for evaluating students’ affective states during the pro-

gramming process
[78]

Behavior Students’ behaviors specific to a system as well as other activities [46,50,88,89,97,101,102]
Difficulties Difficulties and e.g. concepts that are challenging for students [25,27,58,64]
Drop-out risk and performance Approaches for identifying students that are at risk of dropping out

from class, as well as measuring performance
[45,61,66,71,77,104,111,112]

Environment
Algorithm analysis Analysis of student constructed programs and algorithms for e.g.

automatic categorization of students’ solutions
[92,105,106]

(Automated) feedback Improving and estimating feedback mechanisms [11,12,24,29,33,44,93]
Automated grading Analysis of solutions for e.g. reporting and grading [9, 55]
IDE usage Analysis of students interactions within the programming environ-

ment
[8, 37,80,113,115]

Testing Approaches for improving automated testing of students’ source code [41,42,99]

Programming
Behavior Collection of coding, compiling, debugging, and testing activities

and their associated metrics that students perform
[43,56,60,60,61,74,99,111]

Errors Work related to understanding errors during the programming pro-
cess, e.g. syntax errors

[5,6,10,17,30–32,36,49,82,98]

Patterns Repeated sequences of events within a programming behavior [83,91]
Process Programming behavior in which activities follow a sequence [52,53]
Progress Estimating whether the solution is approaching a goal [7, 104]
Strategies Approaches to design of a solution and associated programming be-

havior
[20, 22, 23, 68, 69, 96, 103, 109,

114,115]
Metrics Focused on metrics, did not necessarily attempt to gain an under-

standing of programming behavior, process, or strategy
[18,84,107]

Testing Behavior Analysis of students’ source code testing behaviors [21,40]

cated that process data collection was undertaken outside a
formal course context, while the remaining 5 studies did not
explicitly state the research environment.

The study course environment was predominantly intro-
ductory programming courses (30 studies, 39%). This cap-
tured those explicitly named as such, as well as those of-
ten labelled as CS1. Follow on, or more advanced courses
such as CS2, were captured in 11 (14%) of the studies re-
viewed. Miscellaneous university-level courses such as Data
Structures and Algorithms, Object-Oriented Design, Web
Programming, and variations accounted for the rest. Three
studies indicated that process data had been collected in pre-
CS1 or “after school” contexts. One key statistic of note is
that only 3 studies explicitly mentioned that more than one
course was studied, again highlighting the lack of breadth
in the studies examined. Unknown courses accounted for 26
studies (34%). Given that most studies reviewed were single
course/single institution, it was curious that many studies
did not report the course context of their study, however as
indicated above, 10 studies did acknowledge that data was
collected outside a course context.

Regarding the programming language, Java was the most
common programming language being studied (45 studies,
48%). Python was considerably less with only 8 instances
(11%), and C++ with 5 (7%). Of the papers surveyed, 13
did not explicitly state the language being used. Of note is
that only 7 (9%) mentioned that more than one language
was examined. The reasons for the dominance of Java need
to be examined further. It was not clear from the studies
if this was based on characteristics of the language specifi-
cally, characteristics of available development environments,
or simply what was used in the course in which students were
enrolled.

Integrated Development Environments were the most var-
ied context element. Given the prevalence of Java, it is
unsurprising that BlueJ (14 studies, 18%) and Eclipse (6

studies, 8%) were two of the more widely mentioned. From
all the studies, 23 (30%) did not acknowledge a specific de-
velopment environment.

2.2.4 Subjects
The nature of the participants was captured by looking at

how many students were part of the data collection process
and at what level of study they were. The minimum num-
ber of students recorded was 10, however one study reported
having collected data from 265,000 students (although these
may not be different students). The spread of numbers was
fairly even. 17 studies (22%) reported having less than 100
students from which data was gathered. The largest propor-
tion of studies had between 100 and 500 students involved
(32 studies, 42%). Only 2 studies (3%) had between 500
and 1000 student participants, however 12 studies (16%) re-
ported having process data from over 1000 students. It is
encouraging to see that so many studies had such large data
sets, as it makes it easier to apply more traditional edu-
cational data mining methods. 13 studies did not report
specific numbers.

Of the study level of the students, it was often difficult
to ascertain the exact nature of the students, in part due to
differing terminology, but in many cases due to reports not
specifying what specific level of study students were at. The
majority of students were specified to be first year or CS1
students (31 studies, 41%), while 12 studies (16%) specified
that students were at a second year or CS2 level. At a
more advanced level, 2 studies (3%) reported students being
in their 3rd year of study, and the same number reporting
data collected from postgraduate students. It is important
to note that 7 studies (9%) indicated that the nature of the
students was mixed, in most cases still at a university level.
Of other note is that in 8 studies (11%), the students were
at a High School or pre-CS1 level. In 14 studies (18%) the
specific level of the students could not be determined.
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2.2.5 Task
The Task classification sought to capture the nature of

the programming task/s that students were asked to under-
take in order to capture the process data. Most studies (61
studies, 80%) required students to complete multiple pro-
gramming tasks, rather than just a single task. Specific
detail on the task/s was often difficult to ascertain from the
literature. Many studies described them simply as “small
programming tasks”, “programming problems” or “program-
ming assignments”. In some cases specific detail was pro-
vided describing the nature of the task. Examples of the
programming tasks being assigned to students included im-
plementing specified algorithms (such as searching and sort-
ing), creating graphics, and even implementing computer
games.

What could be gleaned from the papers were some fun-
damental characteristics of the tasks. To begin, all were
described (or could be recognised to be) open ended tasks.
This was an inclusion criteria of the selected literature and
the categorisation process confirmed that this was the case.
In 47 studies (62%) it was explicitly stated that the tasks
were being assessed, with only four studies (5%) indicating
that the tasks were not. The presence of assessment could
not be determined in the remaining 25 studies reviewed. It
is surprising that so many studies either focused on, or re-
quired that, the programming tasks being undertaken were
assessable. However it is also likely that many of those that
were undetermined may not have been being assessed. Fi-
nally, 37 of the studies (49%) stated explicitly that the data
collection process also afforded automated feedback back to
the students. Of the other studies, 13 (17%) did not provide
such feedback, and the remaining 26 did not explicitly state
one way or the other.

2.2.6 Data and Collection
Out of 76 studies, 24 (32%) stated that they informed stu-

dents that data would be analyzed, and only 6 studies (8%)
specifically stated that the data collected was anonymized
before analysis. This is not to say that the remaining papers
did not inform students or anonymize the data; they simply
did not report what had been done in the paper. In terms
of the level of data reported, we found that papers trended
towards logging high-level data (submissions, n = 33) more
often than low-level data (keystrokes, n = 14). Comparing
the level of data collected to the year in which the paper was
published revealed that keystroke-level data has only been
regularly used for data collection in the last few years.

Additionally, we found that open data sets are exceedingly
rare in the literature we reviewed. Only 4 studies (5%) were
based on open datasets. Three of these studies were using
the Blackbox dataset [18], while the last provided open tools
and detailed data within the paper.

As the purpose of the studies was to examine students’
programming processes, a straightforward way to set up a
data collection could be to use the program solutions sub-
mitted by students during a programming course. To obtain
more fine-grained information about students’ actions, it is
also possible to automatically log students’ actions as they
work on the programming assignments. The log informa-
tion can, for example, contain all the interactions the stu-
dent completes within the IDE or even the individual key
strokes.

In 47 of the studies (62%) the automated data collection

was conducted by instrumenting the programming environ-
ment or the computer that the students used so that the
programming environment automatically logs students’ ac-
tions for research purposes. In 21 studies (28%) there was no
instrumentation of the programming environment. In these
cases the research data consisted of materials that the stu-
dents explicitly submitted. Eight of the studies (10%) did
not clearly state if the programming environment was instru-
mented for data collection. The most often mentioned data
collection instruments were WebCAT (nine studies), BlueJ
or an extension of BlueJ (eight studies), and CodeWrite or
its plugin (five studies).

To complement the automatically collected information,
other data collection was also included in the studies. The
most typical data collection method was the use of a ques-
tionnaire (16 studies out of 76, 21%). 8 studies (11%) used
manual assessment outcomes, for example assignment grades,
exam results or final marks of the students. Observations or
interviews were included in 3 studies (4%). One study used
screen recordings that were coded qualitatively, statistics of
video views and students’ actions on discussion forums.

2.2.7 Analysis Methods
Regarding results analysis, a variety of analysis methods

were conducted. Descriptive statistical methods were most
common (63 studies, 83%), with most studies at least re-
porting basic counts and percentages. 22 studies (29%) also
conducted more detailed statistical analysis, such as infer-
ential, Bayesian, t-test, and the like. 14 studies (18%) con-
ducted some form of exploratory statistical analysis, such as
correlation, regression, or factor analysis.

Methods of interpretive analysis were also present in the
studies reviewed. Interpretative classification, such as clas-
sifying based on an existing classification scheme or one that
is refined during the analysis, was present in 6 studies (8%).
Interpretive qualitative analysis, such as the data-driven for-
mation of qualitatively different categories, appeared in 12
(16%) papers. Automated classification was accounted for in
11 studies reviewed (14%). Finally, 3 papers did not present
any formal analysis of data at all.

2.2.8 Quality
We performed a quality assessment of the reviewed pa-

pers by selecting 15 questions to evaluate each paper on.
The questions which were used to assess the quality of the
reviewed papers were adapted from quality criteria for re-
search by Downs & Black [34] and Runeson & Höst [95].
The final quality criteria questionnaire is a part of the Data
Extraction Form included as Appendix A.

We found a normal distribution of quality scores across
studies, with an average score of 7.37/15 (sd 3.787). In
examining individual assessment questions, we found several
items which the group of papers did particularly well on, and
a number which were sorely lacking. We describe the items
here, with suggestions for future work.

The most-often-met quality metrics were “The hypothe-
ses/aims/objectives of the study are clearly described” (with
79% of the papers meeting the metric) and “The main find-
ings of the study are clearly described” (also 79%). This
shows that the majority of papers had clear goals, were suc-
cessful at demonstrating what they had achieved, and ade-
quately shared their findings.

On the other hand, the least-often-met quality metrics
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include “Confounding factors have been acknowledged and
discussed” (25%), “Threats to validity are analysed in a
systematic way and countermeasures were taken to reduce
threats” (22%), and “Ethical issues were acknowledged and
discussed” (3%). The first two items demonstrate that the
studies do not often consider factors outside of the collected
data, despite the fact that most studies did not collect or
present demographic information (which could lead to many
confounding factors). The last item demonstrates that the
field has not yet engaged in a general discussion of the is-
sues related to privacy and ethics that other branches of
data mining have dealt with.

2.3 Concluding Remarks
Overall, during the literature review, we observed that

there has been a significant increase in the amount of articles
that are exploring student-constructed solutions to program-
ming problems. The underlying themes were often related
to approaches for helping the student or the teacher, such
as evaluating approaches for providing feedback, identify-
ing at-risk students, or extracting programming strategies
or patterns that could, perhaps, be used during the instruc-
tion to inform students on their choices.

A number of papers were also driven by a post-hoc anal-
ysis approach, such as course results and their connection
to variables extracted from the context. Whilst such stud-
ies are valuable to the field, this also provides evidence of
the relative immaturity of the field, as longitudinal stud-
ies, where the effect of an intervention would be measured
across a number of courses or institutions, are virtually non-
existent.

The lack of cross-institution co-operation may be explained
by ethics and privacy issues related to working with student
data, which were not often discussed in the papers. At the
same time, similar to the working group on Smart Learning
Content at ITiCSE’14 [19], we also observed the existence
of a number of tools and systems used for collecting pro-
cess data, and that those tools are not often shared or used
across institutions.

The relative immaturity of the field is also evident in the
way in which confounding factors are reported, and how
often researchers sought to replicate or reproduce previous
work. Whilst novelty is valued, building a more coherent
picture of the factors that contribute to the observations
needs to take place for the field to evolve.

3. VERIFYING EXPERIMENTAL FINDINGS

3.1 Re-analysis, Replication, and
Reproduction

As discussed above, much of the research in our field is
isolated and attempts at verifying the results and findings
of others are rare. Juristo et al. [47] studied how several dis-
ciplines verify experimental findings. They identified three
major groups of methods. Based on this analysis, they pro-
posed to use the terms re-analysis, replication, and repro-
duction for identifying verification methods.

In re-analysis, data from a previous experiment is used
to verify the results, i.e. there is no change in the production.
Re-analysis can be used to verify that no errors were made
during the data analysis phase and that similar findings can
be obtained using the same data as in a previous experiment.

In replication, the method from a previous experiment
is followed to verify the results. Replication can be used
to verify that the observed findings can be discovered more
than once with the same method. For example, in software
related studies the experimenter can vary the subjects (stu-
dents) or the software artifacts (tools, systems).

In reproduction, the hypotheses from a previous exper-
iment are tested to verify that the findings are independent
of the experimental method used. This ensures that testing
the hypothesis is not dependent on any particular procedure,
materials or instruments used in the experiment.

Based on the literature review, replication, i.e. changing
subjects and/or used tools, and reproduction, i.e. changing
the data analysis approaches and methods but seeking the
same phenomenon, as well as their combination, were the
most common ways of verifying previously observed findings
in our field.

3.2 The R.A.P Taxonomy
Our literature review showed that reproduction studies

can be performed by the same or different researchers, can
create new data, or involve different types of analyses or key
considerations, while still looking at the same dataset as the
baseline study. To better understand the landscape of re-
production studies, we propose three main criteria, namely,
researchers, data analysis, and production. The researchers
criterion captures whether the same group of researchers is
involved in the reproduction and baseline studies. The data
analysis criterion captures whether the same or new data
analyses were performed, whereas the production criterion
captures whether new data or information is produced.

An extreme interpretation of reproduction is that all three
key components, e.g. data, researchers, and the method used
to analyze the data set, should be renewed or designed anew.
However, studies in which all three components are not nec-
essarily changed do exist, and in fact, any of the three can be
changed or kept intact to produce results of interest. This is
illustrated in the Venn diagram in Figure 2. In it, the three
components of reproduction are intersected to highlight the
different types of studies that can be undertaken, and to pro-
vide insight into the specific significance of the work being
undertaken. The most strict interpretation of reproduction,
where all three research elements are changed, is depicted in
the middle as ‘R.A.P’. At the other extreme, if none of the
components or only researchers (R) are changing, this sig-
nifies that researchers are simply re-analyzing or reviewing
previous data or studies. In the following, we systematically
go through all possible combinations in order to highlight
the significant contributions each combination can make.

The baseline for the naming conventions used are derived
from [47] in which the authors analyzed 18 replication clas-
sifications. Based on those, they identified the three major
groups that were described above. To distinguish between
these categories and to elaborate the notion of reproduction
in more detail, we propose a more detailed novel classifica-
tion to categorize different types of studies. Thus, we have
introduced additional labels in order to recognize the dif-
ference among these. In the following, the two extremes
highlighted earlier (re-analysis and reproduction) still exist.
However, we can see that there are a number of replication
studies that are different from each other that lie within
these two extremes.
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• R = re-analysis—a different experimenter is following
the same analysis done before with the original data
set for review purposes.

• A = extended analysis—an experimenter is extending
the baseline study by looking at a previously analyzed
data set, but using new analysis methods.

• P = repetition—an experimenter is repeating the same
analysis with new data, e.g. applying proven analysis
techniques on a different data set, or collecting similar
data each year in order to undertake a longitudinal
study.

• R.A = verification—the same data set is looked into
again by a different experimenter and using a different
analysis method to verify the conclusions.

• R.P = replication study—a different experimenter is
following the same analysis method as in the baseline
study, but using their own different data set.

• A.P = triangulation—an experimenter is collecting a
new data set to be analyzed with a new method.

• R.A.P = reproduction—a different experimenter is an-
alyzing their own new data set and following a new
analysis method designed for the study in order to test
the hypotheses in the baseline study.

We understand that the strict requirements of reproduc-
tion emerge from natural sciences – where a new finding
should be verified by many different research groups in differ-
ent places until a hypothesis is accepted by the community.
However, in our discipline, many other types of verification
studies can be designed and still make a significant contribu-
tion to the field. The taxonomical approach described here
can help guide other researchers in identifying the ways in
which their work contributes to the existing body of knowl-
edge.

Figure 2: Venn diagram of various study types
supporting verification of previous research. Each
verification study can be classified by deter-
mining whether one, two or all three of the
main components—Researchers, Analysis method,
and/or Production—are changed compared with the
baseline study.

4. DATA COLLECTION
Data are the fuel of educational data mining and learn-

ing analytics. Collecting and sharing data plays a key role
in verifying experimental findings. Without data sharing,

verification and re-analysis is simply not possible. In order
to replicate or reproduce a previous study, one needs to col-
lect data that is related to the previous research. Because
of the significance of the topic, we describe the state of the
art in data collection of programming traces as well as the
differences in various data collection approaches, including
the granularity of the data which describes how students
have solved programming problems. Finally, we also con-
sider ethics related to gathering and sharing such data.

4.1 How Data are Collected
If researchers wish for data collection on student behaviors

to be routine and systematic, the only practical approach
is to automate. Different researchers have taken different
approaches to capturing or recording interactions between
learners and programming environments [1–3, 11, 14, 18, 26,
31, 36, 38, 43, 48, 54, 57, 62, 63, 65, 72–74, 83, 86, 88, 93, 96, 100,
103,113,118]. First, we can roughly describe the differences
in terms of granularity—approximately referring to the size
or frequency of the events, or how frequently the state of
the solution is captured [110]. Figure 3 depicts the most
common points on the granularity spectrum from smallest
(individual key strokes) to largest (complete assignment sub-
missions to some form of assessment or feedback system). In
many cases, differences between the data collected and used
by different researchers can be characterized by describing
which point(s) on the granularity continuum were chosen,
and whether event actions, event actions plus feedback, or
the states of the solution were captured.

Figure 3: Data can be collected at different levels
of granularity, which implies different collection fre-
quencies and associated data set sizes.

Among the common tools used for data collection, differ-
ences emerge in the same way. Researchers have commonly
used different varieties of tools for systematic collection of
student data:

• Automated grading systems – tools used to collect and
process student work that is presented for assessment
are commonly used in data collection. These systems
typically result in data sets at the granularity of sub-
missions (a complete solution state representation, usu-
ally identified by the student as ready for evaluation).
Although full event information about the student’s
submission action and the associated feedback received
may be recorded, a significant limitation is the relative
sparseness of these events, and the lack of visibility into
solution states or actions between submission events.
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Web-CAT [39] is a typical example of a tool used for
this kind of data collection.

• IDE instrumentation – tools used to collect individ-
ual events within a student’s IDE usually focus on
“project”-level events, including file saving, compila-
tion, and execution. Some systems, such as Hacky-
Stat [63], focus more on recording information about
events, while others, such as Marmoset [103], focus on
capturing snapshots of the solution being constructed.
Some web-based programming tools also collect data
at this level of granularity.

• Version control systems – some systems that focus on
the state of the solution only, rather than event track-
ing, use version control systems to store histories of
snapshots of the code being developed. This can be
done with voluntary source code commits when stu-
dents are actively using source code control on their
projects, or by using automated instrumentation to
transparently commit the state of the source code to
a version control system.

• Key logging – at the finest level of granularity, some
systems track and store events at the level of individual
keystrokes. Effectively, the working environment has
to be augmented with a keylogger. This technique ap-
pears to be more common in web-based problem solv-
ing environments at present, as well as newer IDE in-
strumentations. Here, there are also multiple levels of
granularity — some contexts store progress, e.g. dur-
ing a pause, leading to small bulk inserts, while others
store each event individually.

There is no single “reference architecture” for how best to
collect data as students work on exercises or assignments.
Still, there are many common elements that recur across
a number of research projects. To describe these common
elements, Figure 4 illustrates a logical arrangement of key
systems or subsystems that students interact with when de-
veloping solutions, and that instructors or researchers in-
teract with when analyzing data. Few data collection tools
currently exist that address all of the aspects of this logical
architecture. However, Figure 4 provides a common founda-
tion for describing how current tools both overlap and differ.

Students working on individual exercises or programming
tasks primarily interact with tools for constructing and run-
ning program solutions, as well as for submitting and re-
ceiving assessment feedback on their work. These compo-
nents are shown in Figure 4 (a)–(b). The interface students
use for editing code as well as for executing or testing their
work may be embodied in a stand-alone IDE, provided by a
web interface, or even implemented as several distinct tools.
Similarly, students may interact with a separate assessment
system where they must explicitly submit their work, or the
assessment capability may be built-in to their interactions
with the development environment.

Underlying all of the “front end” components that stu-
dents interact with, and where both event data and solu-
tion snapshots are often captured, data collection systems
are centered around a data storage scheme, shown as (c) in
Figure 4. Everything from simple flat files to centralized
server-based database management systems have been used
in various tools. When considering which tool may be most

Figure 4: An abstract view of the logical services
where data instrumentation and collection are typ-
ically performed—note that some data collection
tools encompass multiple logical services.

suitable for a given research task, thought should be given
to the data storage implementation, as well as the specific
data attributes that are recorded. In addition to data stor-
age, some data collection tools also provide mechanisms for
data export (d), which can simplify the workflow for data
analysis. Some systems also provide for data summariza-
tion or visualization features (e), which can also be useful
for both teachers and researchers.

Table 3 lists a number of currently active tools being used
(or with significant potential to be used) for routine data
collection in CS education research. The granularity of data
collection at the various logical locations identified in Fig-
ure 4 are shown in the columns of Table 3. No specific men-
tion of data storage (Figure 4 (c)) is indicated in the table,
since all such data collection systems are built on top of a
data storage infrastructure, most often a relational database.

Some of the tools listed in Table 3 are browser based
whereas some let students use more commonly used pro-
gramming environments. The use of browser based tools, in
many cases, has focused on smaller scale homework problems
(writing a single function or method) using a web interface.
From a technical perspective, web based tools typically do
not provide for separate user actions associated with sav-
ing. This implies that students cannot create intermediate
versions where they could return later.

Finally, in addition to web-based practice problem sys-
tems, assessment tools, and IDE-based data collection, many
other tools have arisen that show the many variations pos-
sible with the logical architecture shown in Figure 4. While
Table 3 includes examples of those that are currently active,
a number of others are summarized in Section 2.

4.2 How Data are Shared
Only a few data sets describing authentic solutions to pro-

gramming problems are publicly available. One of the most
well known is the Blackbox data set containing compila-
tion events from hundreds of thousands of students [18].
There is no information on what tasks students are solv-
ing or any automated feedback in this data. Other pub-
licly available data sets we were able to identify are from
the code.org hour of code event [90] and Code Hunt game
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Table 3: Examples of currently available (2015) programming data collection tools. For each tool we describe
which programming languages we found are supported, what kind of UI/Client is provided for students, and
at what granularity level data is collected on the client side (only the most fine grained level is named). All
the systems listed here, except Blackbox, support automated assessment.

System Languages Client/Instrumentation

Blackbox [18] Java BlueJ/line edits
CloudCoder [85] C/C++, Java, Python, Ruby online ide/keystrokes
CodeWorkout [38] Java, Python, Ruby online ide/compilations
js-parsons [65] Python, Pseudo code online ide/drag and drop actions (D&D)
PCRS [118] C, Python, RA, SQL online ide/compilations
Problets [73] C, C#, Java online ide (Java applet)/compilations
TestMyCode [86] Java NetBeans/keystrokes
URI Online Judge [4] C/C++, Java, Python -
UUhistle [100] Python, Java online ide for visual program simulation/(D&D)
Web-CAT [39] C++, Java, Python -

environment [15]. Code.org data consist of approximately
500,000 learners solving two small programming tasks in a
graphical environment where solutions are constructed by
dragging and dropping code elements. AST presentations
of all the execution points (submissions in the environment)
together with test results are provided. Although the order
of the execution points is known, there are no time-stamps
attached to the events. Finally, names of the tasks are given
but detailed exercise descriptions seen by the students are
not available in this data set. The Code Hunt data is a pre-
view set consisting of submissions generated by 258 users
working on 24 small programming problems in Java and C#.
Each submission contains source code, time stamp, exercise
meta-data and an (anonymized) user-id. For each user, the
data contains self-reported programming experience on scale
1=”Beginner”, 2=”Intermediate”, and 3=”Advanced”. The
data sets are summarized in Table 4.

Each of these data sets is different. There are differences,
for example, in programming environments, tasks, and how
data is stored – unfiltered solution in Code Hunt, comments
removed for anonymization in Blackbox, and AST only in
code.org data. In addition, many of the differences are such
that information provided in one data set is simply not avail-
able in another. For example, Code Hunt is the only data
set providing information on students’ previous program-
ming experience.

In order to compare two data sets describing programming
traces, the contexts from where data is collected as well as
the granularity of the data are highly relevant. To better
understand how these can differ, we shared a few data sets
among the working group members. We found differences
in programming languages, level of the studies, amount of
data, tools being used to collect the data, granularity of
the data, whether any information on student background
and later performance is available, and at what level assign-
ment meta-data is available. By assignment meta-data we
mean assignment descriptions, test cases, feedback given for
students, and information on pedagogy used on the course
(e.g. what course material has been used). Characteristics
of our data sets are given in Table 5. It is challenging to find
nicely comparable data sets and even in data sets originat-
ing from our own environments, there are many details we
simply don’t know – e.g. as many teachers use CloudCoder
we cannot know how these courses are structured.

4.3 Privacy and Ethical Concerns
As identified in the review of literature, very few studies

made explicit mention of ethical and privacy issues. Never-
theless, since this work is focused on the collection and use
of student programming process data, it is pertinent to ac-
knowledge the myriad ethical and privacy issues surrounding
this work.

4.3.1 Privacy
In this context, privacy relates to the ability to identify

students from their programming process data, whether that
is by the researcher collecting the data, or to the broader
research community.

It is common practice to hide personal data in a data set.
However, the identification of students can occur on mul-
tiple different levels. It is obvious that personal identifiers
like name, student number, and email address have to be
anonymised. However, students can also be identified by
some set of their personal data (which is within a data set)
like age, gender, organization, learning year, time stamp, IP-
address used, etc. This is especially noteworthy when the
size of the dataset is small. Additionally, students may be
identifiable by the content they produce, which is laborious
to check by hand. For example, source code files can include
identifying information in comments, and the identifiers in
the program code (student invented names of variables and
data types) can contain information that may destroy the
anonymity of the data set. Moreover, even the time between
key presses can be used to distinguish between students [76].
All these aspects should be taken care of when data sets are
prepared for publicity.

While these may seem like obvious concerns relating to
the collection of programming process data, what is impor-
tant to note is that only 4 out of the 76 studies discussed
in the literature review explicitly mentioned privacy related
issues. This is of concern for two primary reasons. First, if
these issues were indeed addressed as part of the develop-
ment of a tool or the collection of data, then it would be
of significant benefit to the research community for them to
be formally acknowledged. It not only adds to the rigour of
the presentation of the research, but also provides important
insight into key challenges in the automated collection and
analysis of process data.

Secondly, if issues of privacy were not formally addressed
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Table 4: Publicly available data sets with the URL for where they can be downloaded, number of users,
number of tasks and number of data-points generated by the users working on all the tasks together in the
published data sets.

Data URL #students #tasks #data points

Blackbox http://www.bluej.org/blackbox.html 1M NA 830M
Code Hunt https://github.com/Microsoft/Code-Hunt 258 24 13K
code.org http://stanford.edu/˜cpiech/bio/pages/codedotorg/ 500k 2 2.4M

Table 5: Characteristics of the data sets. Letters in code stand for D - Duke University, H - Univer-
sity of Helsinki, T - Toronto University, Y - York College. Assignment metadata column is coded so that
a=assignment description, t=test cases, p=pedagogy, f=feedback.

Data Lang level students #tasks tool* demo-
graphics

course
grade

assignment
metadata

granularity

Blackbox Java N/A 1M * ide yes no - line edits
PCRS Python CS-1 3300 60 online ide no yes atpf submissions
Code Hunt Java/C# N/A 258 24 online ide no no at– submissions
CloudCoder (D13) Python CS-1 233 62 online ide no yes at-f keystrokes
CloudCoder (D14) Python CS-1 194 55 online ide no yes at-f keystrokes
CloudCoder (Y13) C CS-1 133 62 online ide no yes at-f keystrokes
CloudCoder (Y14) C CS-1 86 53 online ide no yes at-f keystrokes
Marmoset (M06) Java CS-2 96 6 online ide no no file saves
code.org Blockly CS-0 500K 2 N/A no N/A submissions
TMC (H14) Java CS-1 150 100+ ide yes yes atp- keystrokes

as part of the research study, then this leads to many other
concerns. The ethical nature of the research can be brought
into question if this is the case, which we discuss further
below. However, at a practical level, the ability to extend
on the work being undertaken may become compromised.
An identifiable dataset cannot be feasibly shared or used
by different researchers. This may lead to an inability to
appropriately share details of the approach in order for the
research to be replicated or reproduced. The work of Brown
et al. [18] regarding Blackbox is a good example of how re-
search in this area can identify ethical challenges and address
them in ways to potentially facilitate the growth of the field.
However, the lack of acknowledgment of the privacy issues
in most research may be one of the greatest reasons to date
for a lack of reproduction research in this field.

4.3.2 Ethics
Undeniably related to the privacy issues raised are issues

relating to research ethics. Ethical issues can relate not only
to the collection of data and transparency to participants,
but also to the use of this data, in particular in how it can
influence the learning relationship with students. When col-
lecting data related to students it is important to be aware of
the ethical guidelines and regulations. They exist to protect
students’ privacy and security. Disclosing a student’s learn-
ing history can influence his/her career and even social life.
Additionally, objective grading must not be compromised.

Appropriate scientific practice is typically controlled by
the Ethics Committee of the university where the research
originally takes place. The researcher needs to get permis-
sion to gather and use such data in advance. The bureau-
cracy related to this varies from university to university. Ad-
cock et al. [5] describe drawing the line regarding the need
of ethical permission in their university as follows:

“The most important non-technical issue we faced

was a consequence of our mere intent to use logged
data in research to be reported to the CS educa-
tion community. This meant that an institutionally-
approved human subjects protocol was required
before data collection could even begin. If we
had decided to use the error logs only for local
instructional purposes (e.g., to identify for spe-
cial attention students having the most trouble
on their programming assignments), then no such
requirement would have been imposed.”

This example also highlights a considerable problem in
the ability to build upon the work conducted by other re-
searchers. Institutional policies for protection of data and
individuals exist and will undoubtedly continue to exist.
These can often be accommodated by eliminating data that
can be considered identifiable in any way. However, future
research in the area of collection of programming process
data should seek to consider how data could be collected
to contain enough granularity to be meaningful, yet be in a
completely unidentifiable form (not only to protect the stu-
dent but possibly also the learning institution). This could
facilitate data sharing and the building of immense data sets
for analysis. We consider this to be a grand challenge for
this research area.

The other facet of ethical consideration is for what pur-
pose the data is used in relation to the students learning.
Purposes such as building understanding of student learn-
ing behaviours in general does not pose considerable con-
cern. Using the data for providing intelligent tutoring or
guidance may begin to raise some ethical concerns, as this
can infer that a system may be pre-preemptively guiding a
student’s behaviour. How much should an automated sys-
tem interact with the students’ natural learning process?
While there are undoubtedly benefits to providing such sup-
portive mechanisms, it may be difficult to balance the use of
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these technologies with the need to use data for the purpose
of student assessment.

5. CASE STUDIES: RE-ANALYSIS, REPLI-
CATION AND REPRODUCTION

In order to better understand the challenges that might
lead to the lack of studies that attempt to replicate or re-
produce previously published work, our working group per-
formed three case studies related to re-analysis, replication
and reproduction of existing work. Our intention here is
not to carry out three separate studies of the quality ex-
pected from a conference publication. Rather, we explore
and report on the challenges and difficulties encountered in
replicating previously published work, and we illustrate the
impact of confounding factors, such as differences in devel-
opment environment or language, on results.

5.1 Re-analysis: A different research team ver-
ifies results

Spacco et al. [101] performed a post-hoc analysis of data
collected by CloudCoder over five semesters across three dif-
ferent institutions. Their results show that, as students do
more exercises, their scores on the exercises tend to decrease,
although the likelihood of submitting correctly compiling
code increases. Presumably, this is because the exercises
tend to be more difficult at the end of the term. However,
the mastery of syntax is, likely, primarily effected by prac-
tice, not the difficulty of the code to be written.

Working group members who were not authors of the orig-
inal paper re-analyzed Spacco et al.’s results. This included
two regression analyses, which were performed using two
software packages to validate the obtained results (R and
Microsoft Excel).

Re-analysis was performed without any personal commu-
nication with the original authors. Under these conditions,
it was possible to recreate both the evolution of students’
score from exercises as well as the evolution of correctly
compiling code for datasets (Figure 5 describes the evolu-
tion of students’ best scores over time). A bootstrapping
analysis was run on the results, which were shown not to
be significantly different from those obtained by Spacco et
al. [101]. Asking the original authors a series of clarifying
questions improved the results only marginally without any
significant difference. The authors then tried to perform the
results with a third data set using the previous assumptions,
but they failed. This indicates that re-analysis is a manual
process and that each assumption must be checked for each
used dataset.

During the re-analysis process, it was learned that while
it is important to know what specific tools were used for the
data analysis (R, SPSS, PyLab, etc.), actually using those
tools is not necessary as the provided implementations in
different tools are very similar. It was also discovered that
the presence of metadata that describes different rows and
columns of each dataset is an absolute necessity, as different
datasets may need different types of pre-processing.

Another challenge that the working group members faced
was trying to calculate statistical estimators. It was learned
that it is important to have good definitions of the sets used
in the statistical calculations. An example of this would be
the calculation of the mean of the best score of each exercise
which can be calculated both by including or excluding the

Figure 5: Evolution of the best scores achieved by
each student along time. Top: Original results. Bot-
tom: Re-analysis

students that attempted exercise but never compiled it suc-
cessfully. Finally, we noticed that it is important to specify
the parameters in detail. For example, a successful compila-
tion event might be interpreted differently as it is a context-
dependent term which might vary depending on the tool
used in the study.

5.2 Replication: Applying a previously pub-
lished analysis method to a different data
set

We then tried to verify the analysis of Spacco et al. [101]
using a different data set than the one used for the origi-
nal paper. For this replication, we used data collected by
PCRS [118] over two semesters at the University of Toronto
Mississauga. PCRS is a browser-based system that pro-
vides a number of different features from CloudCoder, but
does collect time-stamped submissions and the results of test
cases, which is of the same format as the data used in the
original study.
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Figure 6: The percentage of compilable submissions
as a user works on more programming exercise.

The original CloudCoder data suggested that the likeli-
hood that a student’s Python submission compiles correctly
tends to increase with each new exercise a student attempts.
However, we can see in Figure 6 that this finding was not
present in the PCRS dataset, as the percentage of successful
compilations decreases over time. Upon further analysis of
the factors that could explain this phenomenon, we observed
that the early exercises in PCRS are smaller than those in
CloudCoder.

In addition, we observed that while both CloudCoder and
PCRS Python exercises are functions that require students
to fill in the body of the function, and both systems also
allow the instructor to provide a skeleton or template, the
template code from the PCRS data set always compiles cor-
rectly (i.e. it contains “return 0” or “return null”), while the
CloudCoder templates have an empty method body that
does not compile. It is possible that even this simple deci-
sion has lead to the previously observed results.

It is important to highlight that a seemingly small detail
that was omitted in the original paper by Spacco et al., i.e.,
whether the instructor-provided code templates compile, or
even whether templates are provided at all, turned out to
be of great importance, not only to replicate the study with
new data, but also to fully understand the results of the
original work. Before attempting to replicate the study with
a separate dataset, we were unaware that this detail may
have been important.

5.3 Reproduction: Compilation Behaviour
Jadud conducted a series of studies of novice compilation

behavior in a Java-based CS1 course at a research-intensive
European university [59–61,94]. The work instrumented the
BlueJ IDE to report every compilation performed by a stu-
dent, and used this data to describe how novices interact
with the compiler and the errors they encounter. An error
quotient (EQ) is proposed as a measure to predict student
performance. A reproduction of EQ has been published else-
where [87], but for the purpose of our case study, we have
found it instructive to attempt to reproduce contextual data

reported in the 2006 study [61] using a different data set and
researcher.

5.3.1 Comparison of Data Sources
For the reproduction, we use a data set generated in a

CS1 course at a large, North American R1 university. The
data set contains a set of small, weekly coding problems
presented to students. The original paper analyzes 42,000
compilations spread across 2,100 sessions [61]. The new data
set contains 48,037 submissions spread across 2,994 sessions.
130 students were observed in the original study, and the
new data set includes submissions from 476 students.

This data set is different from the original set in two main
ways. First, the original data set was based on Java assign-
ments, whereas the new data set features Python exercises.
Unlike Java, which is compiled, Python is an interpreted lan-
guage with errors reported at runtime. To produce a com-
parison, we switch from the idea of evaluating “compilation”
to evaluation of a “submission”. Each submission causes the
code to be executed and for feedback to be returned, includ-
ing errors and, if the code is syntactically correct, the results
of tests. Similar to the original setup, only a single error is
returned when the code is executed.

Second, in the original data set, students were adding
small pieces of functionality to multiple locations in a starter
code template. The starter code is fairly large – spanning
multiple files. In contrast, in the new set, students are sub-
mitting small, independent exercises. Since the exercises are
independent, failure to “compile” one exercise does not keep
a student from making progress on a different exercise. It
should be easier for a student to stop and move to another
location in the code (for us, a different exercise), as Jadud
observed in the original study.

5.3.2 Defining Sessions
The Jadud work relies on the idea of a work session. Each

session is a sequence of at least seven compilations of dif-
ferent (edited) code where the student has not exited the
IDE. Sessions with less than seven compilation events are
discarded. The paper that first reports EQ results describes
seven compilations as “a tested and reasonable cut-off for
defining the length of a session”, but the specific process for
selecting the cut-off are not discussed [61]. Jadud’s thesis
discusses the issue in the context of data filtering, with the
aim of generating a “representative sample” [59].

We must provide a different definition for a work session
that reflects what we assume was the original intent: a con-
tiguous period of time when a student is focused on working
on the assignment. We define a work session to be a se-
quence of at least seven distinct (edited) submissions, for
any number of exercises, where no neighboring submissions
in the sequence are separated by more than 20 minutes. The
value of 20 minutes was obtained by exploration. There is
a gap of roughly between 15 minutes and one hour where
relatively few new sessions are created.

5.3.3 Comparing Contextual Results
The introduction to the EQ paper presents three figures

as background that are similar to those presented from a
different context (from compilations observed in a lab set-
ting) [60]. The figures reveal differences that result from the
contexts from which the data sets were drawn.

As expected, the two languages report errors in very dif-
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Figure 7: The most common errors encountered
by students using Python. (Compare to Figure 1
in [61].)

ferent ways. Figure 7, which reproduces Figure 1 in the EQ
paper, describes the errors encountered by students using
Python. The number of Parse Errors encountered in Python
is very high. While Java reports specific issues, like miss-
ing semicolons and mismatched brackets (that are reported
in separate columns in Jadud’s figure), Python uses a sin-
gle error – SyntaxError (a Parse Error) – for any issue that
causes parsing to fail. The table also contains several in-
clusions and omissions. Type-related issues that Java might
report during compile time may not generate any error at all
in Python, while Lookup and Zero Division errors reported
by Python are runtime errors in Java.

Figure 8: Time between pairs of compilations.
(Compare to Figure 2 in [61].)

Figure 8 reproduces the second figure in the EQ paper.
Both figures illustrate how commonly students rapidly re-
compile, with roughly 38% of compilations in the Python
data set (and 35% in Java) occurring within the first 30
seconds and a rapid decline thereafter. However, the peak
submission time in the Python set occurs at 20 seconds,
compared to 10 seconds in the Java set.

Figure 3 in the EQ paper makes the point that students
recompile quickly when they have a syntax error to correct.
However, as illustrated in Figure 9, the change from “com-
pilations” to “submissions” is significant. Students receive
feedback not only about the syntactic correctness of their
submission but also about its functional correctness. Hence,
students in the Python data set resubmit code quickly re-

Figure 9: Time between pairs of compilations by
compilation state (T compiles, F fails to compile).
(Compare to Figure 3 in [61].)

gardless of whether it “compiles” or not. This suggests that
students resubmit quickly regardless of the type of error
(compilation or logical) they are solving.

Jadud presents an algorithm for computing the Error Quo-
tient (EQ), a heuristic that “characterizes how much or how
little a student struggles with syntax errors while program-
ming” [61]. As might be expected from the differences in
context illustrated in the previous three figures, the pro-
cess for computing EQ does not directly transfer to a new
context. We performed the filtering process described in
the original paper to eliminate students with little data and
calculated EQ for each session using the weights in the algo-
rithm provided. A linear model estimation found that our
EQ scores were correlated neither with assignment nor exam
marks at the p < 0.05 significant level. A major challenge
in this study is thus the sometimes unspecified differences in
context, which might lead to wrong assumptions or measures
being used to understand or predict student behavior.

6. DISCUSSION AND CONCLUSIONS
In this working group report, we have outlined the current

state of the field of educational data mining and learning an-
alytics of how students solve programming problems. Dur-
ing the last ten years, there has been a substantial increase
in work in the field, which is observable from the quantity of
relevant articles. Despite this, our survey suggests there is
a lack of multi-institutional work such as [81,108] in educa-
tional data mining and learning analytics in programming.
In addition, whilst many tools and techniques used for col-
lecting data exist, results in our field are rarely backed up
with raw data made publicly available. Although researchers
have their own datasets, studies that seek to verify and ex-
tend previous results are still scarce. To better understand
why this is the case, we conducted three cases studies on re-
analysis, replication and reproduction of some well known
studies in our field.

During re-analysis of previous results, where new research-
ers analyzed existing data with existing methodology, two
out of three data sets produced comparable results to those
in an original study, while issues related to lacking documen-
tation caused issues with the re-analysis of the third data
set. This was followed by a replication, where previously
published results were sought after by a new researcher with
a new but similar dataset. Whilst the replication failed to
reach the same conclusions as the original article, additional
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factors that could explain the original results were identified,
thus providing an example of why replication studies are im-
portant for the field. The third case study considered the
reproduction of a well-known metric using a different data
set, different researcher, and altered methodology – that is,
the study sought to identify whether the metric is observ-
able even if much of the analysis changes. The reproduction
process was challenging, and, in the end, we failed to repro-
duce the previously observed results. This does not mean
that the phenomenon does not exist, but that the details of
the context contribute to the outcomes.

Our field is not the only one where reproducibility is a
challenge. In a recent study, reproduction of many well
known psychological studies failed when attempted in a new
context [28]. The inability to repeat experiments and anal-
yses introduces a number of challenges even in the core
data mining community where Blockeet and Vanshoren [16],
for example, have proposed the creation of an “experiment
database” to facilitate replication. In particular, they state
that: “...it should be clear how the experiments can be repro-
duced. This involves providing a complete description of both
the experimental setup (which algorithms to run with which
parameters on which datasets, including how these settings
were chosen) and the experimental procedure (how the al-
gorithms are run and evaluated). Since space is limited in
paper publications, an online log seems the most viable op-
tion.” [16]. An “experiment database” and/or an “online
log” have a number of attractive features. These include
the evaluation of new experimental techniques, discussing
experiments that did not make it to publication, making it
easier to meet the page limits of conferences, researchers be-
ing able to check existing results and work more quickly, and
being able to identify possible errors in their designs more
rapidly due to access to additional comparison points.

Drummond [35] responds to Blockeel and Vanschoren by
highlighting the practical difficulty of an experiment database:
”[s]urely we wouldn’t expect reviewers to very carefully study
the scripts etc needed to produce the results. Yet, simply
checking that they can reproduce the tables and graphs of
the paper would seem to do little to validate the work.” [35].
These perspectives raise important philosophical, technical,
and policy questions. Requiring authors to include an “on-
line log” of their complete experiment would likely simplify
replication. However, an “online log” raises a number of
questions of its own, for example, how much time and effort
should go into producing the online log? If a paper is re-
jected from one conference with one log format, how much
effort is expected for authors to modify the log for a new
conference? Are the reviewers expected to understand and
review the logs as well? Finally, as our field falls in between
human sciences and data mining, the challenges of reporting
contextual details are multi-faceted. On one hand, only re-
porting parameters and used algorithms is not sufficient as
details are needed also for data preparation and extraction,
while on the other hand, as we do not know the confound-
ing factors, providing all the details on the context is not
feasible.

There is a fundamental tension between innovation and
standardization in academia, especially in new, rapidly evolv-
ing fields such as educational data mining. We want to
provide the maximum flexibility for researchers to create
innovative algorithms and approaches to analyze and inter-
pret data, but we also want a standardized language for

researchers to express their innovations such that other re-
search groups could replicate their findings. Too much un-
checked innovation may hinder replication, but premature
standardization may stifle creativity. Perhaps at this mo-
ment, in 2015, a typical conference paper, with its limited
number of pages and lengthy obligatory sections (references,
related work, introduction) leaves too little room to pro-
vide sufficient detail for easy replication. However, does this
mean that replication studies will still be rare in 2025?

7. FUTURE DIRECTIONS
The way the computer science education field will be per-

ceived ten years from now depends heavily on the actions
of our field today. To show a glimpse of our vision of the
future state of the field, we outline five Grand Challenges –
or goals – for researchers and practitioners.

As observed in the case study on repetition, where previ-
ously published analysis methods were applied to a different
data sets, context-specificity may lead to unfounded or er-
roneous conclusions. This is because the educational land-
scape varies drastically from country to country, and even
within the same institution and course, as the pedagogical
approaches and used programming languages change. Ig-
noring context changes such as these leads to conclusions
from one study being wrongfully applied in drastically dif-
ferent contexts. As the majority of results, so far, come
from studies on a single institution and course, the first
Grand Challenge is to have researchers and practitioners
commit to building and maintaining a multi-language, multi-
institution, multi-nation learning process data and experi-
ment result database that contains student metadata, logs
from systems that the students use, and other details, which
could then be used as a reflection point for novel results from
a specific context. At the same time, as pointed out in the
literature review, privacy issues need more attention. Here,
with the ever-increasing detail of data, maintaining partici-
pant privacy becomes increasingly challenging.

Our analysis also revealed that the majority of studies did
not consider or report upon confounding factors that may
contribute to the observed outcomes. Whilst assumptions
are made based on the data at the disposal of the researchers,
understanding results from previous work is needed in order
for the field to move forward. Thus the second Grand Chal-
lenge is to systematically analyze and verify previous stud-
ies using data from multiple contexts to tease out tacit fac-
tors that contribute to previously observed outcomes. Here,
the R.A.P. Taxonomy introduced in Section 3.2. provides a
guideline for the types of studies that are needed.

Whilst the first two Grand Challenges are related to ex-
ploring existing and future data sets to build a solid base of
knowledge, we expect that the field will also evolve in how
research is conducted. Many of the studies found in the lit-
erature review were post-hoc studies of data from a single
context, and very few papers reported on experimental set-
tings or pilots where some conditions were varied. Whilst
post-hoc studies are a part of an exploratory field, we need
to refrain from drawing strong conclusions from such stud-
ies, especially if the data comes from a single context or
course. Instead, scientific experimental methods should be
adopted to a larger degree. Towards this, the third Grand
Challenge is to use pilots and experiments, with control and
treatment groups, to evaluate and explain the results.

The post-hoc nature of the studies as discussed above
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also influences their applicability. For example, a number
of subcategories in Table 2, such as Drop-out risk and per-
formance, which identifies students who are at risk of drop-
ping out, have been studied to an extent, but have not been
employed to create actual interventions where some of the
proposed methods would be put into practice. We believe
that theoretical results are important, but that in this field
their real value comes from application. The fourth Grand
Challenge is to adopt results and practices into classroom
use to continuously monitor and improve offered education.
Through in-situ observations and emerging practices, prac-
titioners will help others to adapt the presented practices to
their contexts, which will invigorate the field, and open up
completely new research streams.

The final challenge relates to generalization. Our litera-
ture review found that very few studies underpinned their
results or analysis methods on a specific theory or a model
of pedagogy or educational practices. This implies, together
with the drawbacks identified above, that results and prac-
tices will be more difficult if not impossible to generalize.
Thus, when initial results have been received from adopt-
ing practices into classrooms, the next step, and fifth Grand
Challenge, is to generalize the results to other contexts, if
possible, and help practitioners apply them in their respec-
tive fields.
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del Puerto Paule Ruiz. Assistance in Computer
Programming Learning Using Educational Data Mining
and Learning Analytics. In Proceedings of the 18th ACM
Conference on Innovation and Technology in Computer
Science Education, ITiCSE ’13, pages 237–242, New York,
NY, USA, 2013. ACM.

[83] C. Norris, F. Barry, J. B. Fenwick, K. Reid, and
J. Rountree. ClockIt: Collecting Quantitative Data on
How Beginning Software Developers Really Work. In
Proceedings of the 13th Annual Conference on Innovation
and Technology in Computer Science Education, ITiCSE
’08, pages 37–41, New York, NY, USA, 2008. ACM.

[84] R. C. Oliver. How Can Software Metrics Help Novice
Programmers? In Proceedings of the Thirteenth
Australasian Computing Education Conference - Volume
114, ACE ’11, pages 55–62, Darlinghurst, Australia,
Australia, 2011. Australian Computer Society, Inc.

[85] A. Papancea, J. Spacco, and D. Hovemeyer. An Open
Platform for Managing Short Programming Exercises. In
Proceedings of the Ninth Annual International ACM
Conference on International Computing Education
Research, ICER ’13, pages 47–52, New York, NY, USA,
2013. ACM.
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APPENDIX
A. DATA EXTRACTION FORM

Table 6: Categories and questions/fields in the data extraction form.

Paper Identification
Paper title
Venue
Motivation / Research Goal
Research goal (copy/paste verbatim from the
source if possible)

. . . *

Are research questions explicitly stated? Yes/No
Methodological Aspects / Approach
Single or multi-context Multiple choice: single/many/no course, sin-

gle/multi/no institution
Single or longitudinal Single choice: single or longitudinal
Type of research Multiple choice: case study/constructive

research/experiment/study/survey re-
search/other(please provide details)

Replication study Single choice: Yes/No/Partial
Name of replicated study . . .
Does the paper use a theory or known model
(the theory/model must be actually used
somehow in the research)

Yes/No

Context of the Research
Programming language . . .
IDE . . .
Course related setting Single choice: within a course/not-course set-

ting/Unknown
Name of course . . .
Subjects
Number of students . . .
Level of students/course (e.g., third year un-
dergraduate)

. . .

Majors/non-majors/mixed Single choice: majors/non-
majors/mixed/unknown/other(please provide
details)

Task
Programming problem (brief description) . . .
Single or multiple tasks Single choice: single/multiple
Open-ended task Yes/No
Tasks are graded Yes/No/Unknown
Automated feedback Yes/No/Unknown
Data that is Collected
Type of data (e.g., coding snapshots, compiler
errors, program output, time-stamps, exam re-
sults, demographics, eye movements, etc.)

. . .

Frequency of data collection . . .
Anonymized data Yes/No/Unknown
Data analyzed without informing students Yes/No/Unknown
Open dataset Yes/No/Unknown
Research Instruments (how is the data collected)
IDE or computer instrumentation (only look-
ing at submissions => no instrumentation)

Yes/No/Unknown

Name of the data collection system . . .
Other data collection instruments (e.g., ques-
tionnaire, eye tracking etc.)

. . .

Analysis Methods (how is the data analyzed)
Statistics Multiple choice: descriptive statis-

tics/exploratory analysis (correlation, re-
gression, factor analysis, etc.)/inferential
analysis (Bayesian, t-test, etc.)/interpretive
classification (based on existing classifica-
tion scheme or one that is refined during
the analysis)/interpretive qualitative anal-
ysis (data-driven formation of qualitatively
different categories)/automated classifica-
tion/other(please provide details)

Results
Continued on next page
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Table 6 – Continued from previous page
How are the results used or proposed to
be used (e.g., intervention, personalization,
course review, understanding student behav-
ior)

. . .

Name of the data collection system . . .
Ethical issues are discussed Yes/No
Privacy issues are discussed Yes/No
Quality Assessment (check all that apply)
The hypotheses/aims/objectives of the study are clearly described.
The choices of participants, instruments and methods are clearly motivated to address the research questions.
The characteristics of the students included in the study are clearly described.
The data collected are sufficient for the purpose of the study
The research process is clearly described.
The main findings of the study are clearly described.
A chain of evidence from observations to conclusions is clearly established.
Actual probability and significant values have been reported.
An attempt was made to reduce bias.
Appropriate analysis procedures were used to assess the main outcomes.
Appropriate measures are used to ensure accurate, valid and reliable outcomes.
Threats to validity are analyzed in a systematic way and countermeasures were taken to reduce threats.
Confounding factors have been acknowledged and discussed.
Ethical issues were acknowledged and discussed.
Conclusions, implications for practice, and future research were suitably reported.
*Free form text
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Do student programmers all tend to write the same software tests? 2014 [40]
Enhancing syntax error messages appears ineffectual 2014 [29]
Exploring Problem Solving Paths in a Java Programming Course 2014 [56]
How (not) to introduce badges to online exercises 2014 [50]
How novices tackle their first lines of code in an IDE: analysis of programming session
traces

2014 [109]

Identifying challenging CS1 concepts in a large problem dataset 2014 [27]
Increasing the effectiveness of automated assessment by increasing marking granular-
ity and feedback units

2014 [44]

Investigating Automated Student Modeling in a Java MOOC 2014 [117]
Investigating novice programming mistakes: educator beliefs vs. student data 2014 [17]
No tests required: comparing traditional and dynamic predictors of programming
success

2014 [112]

Responses to adaptive feedback for software testing 2014 [24]
SPOC-supported introduction to programming 2014 [89]

37 Million Compilations: Investigating Novice Programming Mistakes in Large-Scale
Student Data

2015 [10]

An Empirical Study of Iterative Improvement in Programming Assignments 2015 [88]
An Incremental Hint System For Automated Programming Assignments 2015 [11]
Analyzing Student Work Patterns Using Programming Exercise Data 2015 [101]
Evaluation of Source Code with Item Response Theory 2015 [13]
Identifying Styles and Paths toward Success in MOOCs 2015 [97]
Students at Risk: Detection and Remediation 2015 [71]
Towards Incremental Separation of Surmountable and Insurmountable Programming
Difficulties

2015 [25]

63




