
A Canonicalizing Model for Building

Programming Tutors

Kelly Rivers and Kenneth R. Koedinger

Carnegie Mellon University

Abstract. It is difficult to build intelligent tutoring systems in the
domain of programming due to the complexity and variety of possi-
ble answers. To simplify this process, we have constructed a language-
independent canonicalized model for programming solutions. This model
allows for much greater overlap across different students than a basic
text model, which enables more self-sustaining hint generation methods
in programming tutors.

Keywords: canonicalization, programming tutors, abstract syntax trees.

1 Introduction

Though interest has continually been shown in creating intelligent tutors for
programming topics, few solutions have been found that have been applied to
widespread classes [1]. This is partially due to constraints already existing in
the classroom such as programming language, development environment, and
curriculum choices. We aim to simplify the tutor-building process by creating a
language-independent method for turning students’ programs into canonicalized
models which can be more easily examined and compared than text programs.
We also discuss ideas for self-sustaining hint generators that would not require
as much instructor input.

2 Model Creation

Our model is based on abstract syntax trees (ASTs). ASTs represent the
underlying structure of a program by branching complex statements out into
smaller sub-statements. They are commonly used in program transformations,
which means that modules already exist for creating and modifying ASTs from
text for many different programming languages; they’re also constructed from
basic programming concepts, so they can be made equivalent across languages.

Once a student’s program has been converted into an AST, we can gather rele-
vant information on what data structures and algorithms the student is using by
examining the tree. This information can later be used to unearth basic problems.
For example, a student uncomfortable with variables might try to write an entire
program in one line rather than use any assignments, while another student might
write code after a return statement without realizing that it isn’t being run.

S.A. Cerri et al. (Eds.): ITS 2012, LNCS 7315, pp. 591–593, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



592 K. Rivers and K.R. Koedinger

Fig. 1. Above, the two programs shown canonicalize to the same model

At that point, canonicalizing functions can be run over the AST to change it
into a format more likely to match other students’ submissions. These functions
are commonly used in compiler optimizations and result in trees which can be
shown to be semantically equivalent [2], so they will not change the student’s
output. The functions we use currently include:

– Collapsing constant operations

– Propagating expressions assigned to variables

– Using De Morgan’s laws to propagate the not op inside boolean statements

– Normalizing the direction of comparisons

– Ordering commutative operators with a strict comparison function

– Removing unreachable and unused code

– Inlining helper functions

We did preliminary testing of this model using solutions to basic programming
problems taken from an introductory programming course composed of around
five hundred students. A median of 70% of the students could be mapped to
common solution groups (where groups were composed of 2 to 300 students). Fig.
1 demonstrates how this includes submissions that look completely different on a
textual level. We are currently extending the model to work for more complicated
problems, and results have been promising (a median of 25% of the students map
to groups in multi-function problems using control structures).

Next, we plan to utilize machine learning algorithms to determine the best
methodology for creating a clustering of canonicalized models, using unit test
results, tree substructures, tokens, and any other information which proves useful
to construct the clustering algorithm. We are also considering using text mining
techniques on the tokens of the canonicalized abstract syntax trees. We plan to
verify the correctness of the resulting algorithms by checking it against original
grades and results from unit tests run on the original submissions.



A Canonicalizing Model for Building Programming Tutors 593

3 Hint Generation and Future Work

The next steps involve experimenting with different ways to generate hints based
off of canonicalized models. A few approaches which could be adapted include:

Model Driven: Basic hints could be created based entirely on the student’s
underlying model and the canonicalizing functions used to create it. This would
look for the typical red flags of bad code- unreachable statements, infinite loops,
etc.- to give suggestions for improvement. It could also be trained to look for
typical novice mistakes, such as off-by-one errors and stylistic mistakes.

Data Driven: In this approach (inspired by work done on creating automatic
hints in a logic tutor [3]), the clustering of models would be used in conjunction
with compile-time data about how previous programs changed over time until
they reached a solution. The solutions found by other students whose models
were closest in the clustering would be used to determine the optimal next step
for the student asking for a hint.

Crowd Driven: Instead of being programmatically based, this option uses
crowd-sourcing amongst students to slowly build a database of hints. Students
would type quick conceptual explanations of how they had fixed a problem af-
ter progressing past a state; these statements could then be re-used as hints for
future students stuck at the same state. A simple voting system could bring the
best hints to the top, and a filtering mechanism could keep the explanations
from giving away exact solutions.

We plan to continue work on this concept using a corpus of final submissions
from the introductory programming course at our university. If this method is
successful, we hope to use it in a system for programming instructors requiring
little input or upkeep, which would be ideal for the large-scale courses which
have become popular recently; in such an environment, solutions would be sub-
mitted rapidly enough to provide tutoring for complex problems. We also hope
to explore how canonicalization could be used as a method for grouping submis-
sions (for purposes such as general grading and plagiarism detection) and how
canonicalizing functions should best be classified for instructor use.

Acknowledgements. This work was supported in part by Graduate Training
Grant awarded to Carnegie Mellon University by the Department of Education
(# R305B090023).

References

1. Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin,
M., Paterson, J.: A survey of literature on the teaching of introductory programming.
ACM SIGCSE Bulletin 39(4), 204–223 (2007)

2. Xu, S., Chee, Y.S.: Transformation-Based Diagnosis of Student Programs for Pro-
gramming Tutoring Systems. IEEE Transactions on Software Engineering 29(4),
360–384 (2003)

3. Barnes, T., Stamper, J.: Toward Automatic Hint Generation for Logic Proof Tutor-
ing Using Historical Student Data. In: Woolf, B.P., Aı̈meur, E., Nkambou, R., Lajoie,
S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 373–382. Springer, Heidelberg (2008)


	A Canonicalizing Model for Building Programming Tutors
	Introduction
	Model Creation
	Hint Generation and Future Work
	References




